Assessing the Response of the Net Primary Productivity to Snow Phenology Changes in the Tibetan Plateau: Trends and Environmental Drivers
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Trend Analysis
3.2. Partial Correlation Analysis
3.3. Partial Least Squares Structural Equation Modeling (PLS-SEM)
4. Results
4.1. Spatial and Temporal Variation Analysis of NPP and SP
4.1.1. The Spatial Patterns of the NPP and SP in the TP
4.1.2. Temporal Trends in the NPP and SP in the TP from 2011 to 2020
4.2. The Correlation between the NPP and SP in the TP from 2011 to 2020
4.3. Meteorological Factors That Have an Indirect Impact on the NPP through SP
5. Discussion
5.1. The Mediating Effect of the SP on the TP’s NPP
5.2. The Mediating Effect of Snow Cover on the Temperature–NPP Relationship Variations with Vegetation Types
5.3. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Qin, D.H.; Zhai, P.M. Amplification of warming on the Tibetan Plateau. Adv. Clim. Chang. Res. 2023, 14, 493–501. [Google Scholar] [CrossRef]
- Wang, C.-P.; Huang, M.-T.; Zhai, P.-M. Change in drought conditions and its impacts on vegetation growth over the Tibetan Plateau. Adv. Clim. Chang. Res. 2021, 12, 333–341. [Google Scholar] [CrossRef]
- Xu, J.; Tang, Y.; Dong, L.; Wang, S.; Yu, B.; Wu, J.; Zheng, Z.; Huang, Y. Temperature-dominated spatiotemporal variability in snow phenology on the Tibetan Plateau from 2002 to 2022. Cryosphere 2024, 18, 1817–1834. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Stigter, E.E.; Yao, T.; Immerzeel, W.W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Chang. 2021, 11, 591–597. [Google Scholar] [CrossRef]
- Starr, G.; Oberbauer, S.F. Photosynthesis of arctic evergreens under snow: Implications for tundra ecosystem carbon balance. Ecology 2003, 84, 1415–1420. [Google Scholar] [CrossRef]
- Convey, P.; Coulson, S.J.; Worland, M.R.; Sjöblom, A. The importance of understanding annual and shorter-term temperature patterns and variation in the surface levels of polar soils for terrestrial biota. Polar Biol. 2018, 41, 1587–1605. [Google Scholar] [CrossRef]
- Rixen, C.; Hoye, T.T.; Macek, P.; Aerts, R.; Alatalo, J.M.; Anderson, J.T.; Arnold, P.A.; Barrio, I.C.; Bjerke, J.W.; Björkman, M.P.; et al. Winters are changing: Snow effects on Arctic and alpine tundra ecosystems. Antarct. Sci. 2022, 8, 572–608. [Google Scholar] [CrossRef]
- Chen, S.; Guo, B.; Yang, F.; Han, B.; Fan, Y.; Yang, X.; He, T.; Liu, Y.; Yang, W. Spatial and temporal patterns of NPP and its response to climate change in the Qinghai-Tibet Plateau from 2000 to 2015. Nat. Resour. J. 2020, 35, 2511–2527. [Google Scholar] [CrossRef]
- Bokhorst, S.; Bjerke, J.W.; Bowles, F.W.; Melillo, J.; Callaghan, T.V.; Phoenix, G.K. Impacts of extreme winter warming in the sub-Arctic: Growing season responses of dwarf shrub heathland. Glob. Chang. Biol. 2008, 14, 2603–2612. [Google Scholar] [CrossRef]
- Mark, A.F.; Korsten, A.C.; Guevara, D.U.; Dickinson, K.J.M.; Humar-Maegli, T.; Michel, P.; Halloy, S.R.P.; Lord, J.M.; Venn, S.E.; Morgan, J.W.; et al. Ecological responses to 52 years of experimental snow manipulation in high-alpine cushionfield, Old Man Range, south-central New Zealand. Arct. Antarct. Alp. Res. 2015, 47, 751–772. [Google Scholar] [CrossRef]
- Trujillo, E.; Molotch, N.P.; Goulden, M.L.; Kelly, A.E.; Bales, R.C. Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci. 2012, 5, 705–709. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Guo, H.; Liu, D.; Zhao, Y.; Zhang, T.; Liu, Q.; Piao, S. Disentangling the mechanisms behind winter snow impact on vegetation activity in northern ecosystems. Glob. Chang. Biol. 2018, 24, 1651–1662. [Google Scholar] [CrossRef]
- Zhang, X.; Sa, C.; Hai, Q.; Meng, F.; Luo, M.; Gao, H.; Zhang, H.; Yin, C.; Zhang, Y.; Sun, H. Quantifying the Effects of Snow on the Beginning of Vegetation Growth in the Mongolian Plateau. Remote Sens. 2023, 15, 1245. [Google Scholar] [CrossRef]
- Ma, W.; Hu, J.; Zhang, B.; Guo, J.; Zhang, X.; Wang, Z. Later-melting rather than thickening of snowpack enhance the productivity and alter the community composition of temperate grassland. Sci. Total Environ. 2024, 923, 171440. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, Y.; Zona, D.; Oechel, W.; Park, S.-J.; Lee, B.-Y.; Yi, Y.; Erb, A.; Schaaf, C.L. Carbon response of tundra ecosystems to advancing greenup and snowmelt in Alaska. Nat. Commun. 2021, 12, 6879. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wang, Q.; Liu, R.; Zhao, Y.; Zhang, D. Effects of climate change and human activities on vegetation coverage change in northern China considering extreme climate and time-lag and -accumulation effects. Sci. Total Environ. 2023, 860, 160527. [Google Scholar] [CrossRef] [PubMed]
- Abeli, T.; Rossi, G.; Gentili, R.; Mondoni, A.; Cristofanelli, P. Response of alpine plant flower production to temperature and snow cover fluctuation at the species range boundary. Plant Ecol. 2012, 213, 1–13. [Google Scholar] [CrossRef]
- Cockell, C.S.; Córdoba-Jabonero, C. Coupling of climate change and biotic UV exposure through changing snow-ice covers in terrestrial habitats. Photochem. Photobiol. 2004, 79, 26–31. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, P.F.; Zhang, X.L.; Wu, Y.L. Increased snow cover enhances gross primary productivity in cold and dry regions of the Tibetan Plateau. Ecosphere 2023, 14, e4656. [Google Scholar] [CrossRef]
- He, M.; Fang, K.; Chen, L.Y.; Feng, X.H.; Qin, S.Q.; Kou, D.; He, H.B.; Liang, C.; Yang, Y.H. Depth-dependent drivers of soil microbial necromass carbon across Tibetan alpine grasslands. Glob. Chang. Biol. 2022, 28, 936–949. [Google Scholar] [CrossRef]
- Wang, G.X.; Li, Y.S.; Wang, Y.B.; Wu, Q.B. Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 2008, 143, 143–152. [Google Scholar] [CrossRef]
- Gao, Q.Z.; Guo, Y.Q.; Xu, H.M.; Ganjurjav, H.; Li, Y.; Wan, Y.F.; Qin, X.B.; Ma, X.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; An, S.; Inouye, D.W.; Schwartz, M.D. Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Glob. Chang. Biol. 2015, 21, 3635–3646. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.Y.; Tang, Y.; Xu, J.H.; Shu, S.; Yu, B.L.; Wu, J.P.; Huang, Y. Impact of Snow Cover Phenology on the Vegetation Green-Up Date on the Tibetan Plateau. Remote Sens. 2022, 14, 3909. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Yu, B.; We, J.; Kang, E.L.; Xu, M.; Wang, S.; Klein, A.; Chen, Y. Improving MODIS snow products with a HMRF-based spatio-temporal modeling technique in the Upper Rio Grande Basin. Remote Sens. Environ. 2018, 204, 568–582. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011-2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Li, Q.; Shi, G.; Shangguan, W.; Nourani, V.; Li, J.; Li, L.; Huang, F.; Zhang, Y.; Wang, C.; Wang, D.; et al. A 1 km daily soil moisture dataset over China using in situ measurement and machine learning. Earth Syst. Sci. Data 2022, 14, 5267–5286. [Google Scholar] [CrossRef]
- Sarstedt, M.; Moisescu, O.-I. Quantifying uncertainty in PLS-SEM-based mediation analyses. J. Mark. Anal. 2024, 12, 87–96. [Google Scholar] [CrossRef]
- Shen, M.; Zhang, G.; Cong, N.; Wang, S.; Kong, W.; Piao, S. Increasing altitudinal gradient of spring vegetation phenology during the last decade on the Qinghai-Tibetan Plateau. Agric. For. Meteorol. 2014, 189, 71–80. [Google Scholar] [CrossRef]
- Zhang, Q.; Kong, D.; Shi, P.; Singh, V.P.; Sun, P. Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013). Agric. For. Meteorol. 2018, 248, 408–417. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Y.H.; Zeng, Z.; Huang, M.; Li, X.; Piao, S. Temperature, precipitation, and insolation effects on autumn vegetation phenology in temperate China. Glob. Chang. Biol. 2016, 22, 644–655. [Google Scholar] [CrossRef]
- Paudel, K.P.; Andersen, P. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Clim. Chang. 2013, 117, 149–162. [Google Scholar] [CrossRef]
- Luo, S.; Fang, X.; Lyu, S.; Ma, D.; Chang, Y.; Song, M.; Chen, H. Frozen ground temperature trends associated with climate change in the Tibetan Plateau Three River Source Region from 1980 to 2014. Clim. Res. 2016, 67, 241–255. [Google Scholar] [CrossRef]
- Huang, K.; Zu, J.; Zhang, Y.; Cong, N.; Liu, Y.; Chen, N. Impacts of snow cover duration on vegetation spring phenology over the Tibetan Plateau. J. Plant Ecol. 2019, 12, 583–592. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, H.; Ma, X.; Zhang, J.; Yang, R. Relationship between vegetation phenology and snow cover changes during 2001–2018 in the Qilian Mountains. Ecol. Indic. 2021, 133, 108351. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Peng, D.; Gonsamo, A.; Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 2018, 256, 61–74. [Google Scholar] [CrossRef]
- Theurillat, J.P.; Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Choler, P. Winter soil temperature dependence of alpine plant distribution: Implications for anticipating vegetation changes under a warming climate. Perspect. Plant Ecol. Evol. Syst. 2018, 30, 6–15. [Google Scholar] [CrossRef]
- Zheng, J.; Jia, G.; Xu, X. Earlier snowmelt predominates advanced spring vegetation greenup in Alaska. Agric. For. Meteorol. 2022, 315, 108828. [Google Scholar] [CrossRef]
- O’Connell, J.L.; Alber, M.; Pennings, S.C. Microspatial Differences in Soil Temperature Cause Phenology Change on Par with Long-Term Climate Warming in Salt Marshes. Ecosystems 2020, 23, 498–510. [Google Scholar] [CrossRef]
- Lupi, C.; Morin, H.; Deslauriers, A.; Rossi, S. Xylogenesis in black spruce: Does soil temperature matter? Tree Physiol. 2012, 32, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Lau, W.K.M.; Sang, J.; Kim, M.K.; Kim, K.M.; Koster, R.D.; Yasunari, T.J. Impacts of Snow Darkening by Deposition of Light-Absorbing Aerosols on Hydroclimate of Eurasia During Boreal Spring and Summer. J. Geophys. Res. Atmos. 2018, 123, 8441–8461. [Google Scholar] [CrossRef]
- Liu, H.; Xiao, P.F.; Zhang, X.L.; Chen, S.Y.; Wang, Y.H.; Wang, W.Y. Winter snow cover influences growing-season vegetation productivity non-uniformly in the Northern Hemisphere. Commun. Earth Environ. 2023, 4, 487. [Google Scholar] [CrossRef]
- Domine, F.; Barrere, M.; Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: Impact on snow physical properties and permafrost thermal regime. Biogeosciences 2016, 13, 6471–6486. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Shen, L.; Chen, Z.; Ni, J.; Huang, Y. Assessing the Response of the Net Primary Productivity to Snow Phenology Changes in the Tibetan Plateau: Trends and Environmental Drivers. Remote Sens. 2024, 16, 3566. https://doi.org/10.3390/rs16193566
Liu J, Shen L, Chen Z, Ni J, Huang Y. Assessing the Response of the Net Primary Productivity to Snow Phenology Changes in the Tibetan Plateau: Trends and Environmental Drivers. Remote Sensing. 2024; 16(19):3566. https://doi.org/10.3390/rs16193566
Chicago/Turabian StyleLiu, Jiming, Lu Shen, Zhaoming Chen, Jingwen Ni, and Yan Huang. 2024. "Assessing the Response of the Net Primary Productivity to Snow Phenology Changes in the Tibetan Plateau: Trends and Environmental Drivers" Remote Sensing 16, no. 19: 3566. https://doi.org/10.3390/rs16193566
APA StyleLiu, J., Shen, L., Chen, Z., Ni, J., & Huang, Y. (2024). Assessing the Response of the Net Primary Productivity to Snow Phenology Changes in the Tibetan Plateau: Trends and Environmental Drivers. Remote Sensing, 16(19), 3566. https://doi.org/10.3390/rs16193566