Multispectral UAV Image Classification of Jimson Weed (Datura stramonium L.) in Common Bean (Phaseolus vulgaris L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Data Collection
2.3. (Pre-)Processing
Band Number | Band Name [-] | Center Wavelength [nm] | Band Width [nm] |
---|---|---|---|
1 | Coastal blue | 444 | 28 |
2 | Blue | 475 | 32 |
3 | Green | 531 | 14 |
4 | Green | 560 | 27 |
5 | Red | 650 | 16 |
6 | Red | 668 | 14 |
7 | Red edge | 705 | 10 |
8 | Red edge | 717 | 12 |
9 | Red edge | 740 | 18 |
10 | Near IR | 842 | 57 |
2.4. Post-Processing
2.5. Image Analysis
- The development and application of logistic regression models utilizing reflectance data acquired from the same common bean field for assessing the spectral discriminative capacity between common bean and D. stramonium.
- The discriminative capacity was again investigated for varying simulated ground sampling distances to examine the influence on classification performance.
- Examination of the generalization of a model created in analysis I by evaluating its performance on unseen data from multiple distinct common bean fields. To address differences between datasets, VI were incorporated in the dataset and/or CDF-corrected data was used.
- Examination of the generalization of leave-one-group-out cross-validation (LOGO CV) models using multispectral data and VI, as well as the application to CDF-corrected data to test whether classification performance increases when spectral data from multiple common bean fields are combined.
2.5.1. Spectral Distinctness of D. stramonium and Common Bean
2.5.2. The Impact of Ground Sampling Distance on Classification Performance
2.5.3. Generalization of the Oudenaarde Model
Abbreviation | Name | Formula | Reference |
---|---|---|---|
NDVI | Normalized difference vegetation index | [38] | |
SAVI | Soil adjusted vegetation index | [39] | |
MSAVI | Modified soil adjusted vegetation index | [40] | |
SR | Simple ratio | [41] | |
DVI | Difference vegetation index | [38] | |
RDVI | Renormalized difference vegetation index | [42] | |
VARI | Vegetation atmospherically resistant index | [43] | |
NDRE | Normalized difference red edge index | [44] | |
GNDVI | Green normalized difference vegetation index | [45] |
2.5.4. Generalization by Leave-One-Group-Out Cross-Validation
3. Results
3.1. Vegetation Analysis
3.2. Spectral Distinctness of D. stramonium and Common Bean
3.3. The Impact of Ground Sampling Distance on Classification Performance
3.4. Generalization of the Oudenaarde Model
3.5. Generalization by Leave-One-Group-Out Cross-Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Departement Landbouw en Visserij, Groenten Openlucht: Sectoroverzicht Tuinbouw, Agentschap Landbouw & Zeevisserij. Available online: https://landbouwcijfers.vlaanderen.be/landbouw/groenten-openlucht (accessed on 2 July 2024).
- McNally, W.D. A case of stramonium poisoning. J. Am. Med. Assoc. 1915, 19, 1640. [Google Scholar] [CrossRef]
- Waarnemingen.be, Waarnemingen van Doornappel en Zwarte Nachtschade. Available online: https://waarnemingen.be/species/6683/statistics/ (accessed on 11 May 2023).
- www.inaturalist.org. Available online: https://www.inaturalist.org/taxa/55854-Datura-stramonium (accessed on 15 November 2023).
- Agriculture et Environnement. Du Datura Dans des Haricots Verts; Agriculture et Environnement: Paris, France, 2012. [Google Scholar]
- Hanssens, J.; (Ardo NV, Ardooie, Belgium). Personal communication, 2018.
- Lauwers, M.; Nuyttens, D.; De Cauwer, B.; Pieters, J. Hyperspectral classification of poisonous solanaceous weeds in processing Phaseolus vulgaris L. and Spinacia oleracea L. Comput. Electron. Agric. 2022, 196, 106908. [Google Scholar] [CrossRef]
- Borregaard, T.; Nielsen, H.; Nørgaard, L.; Have, H. Crop-weed discrimination by line imaging spectroscopy. J. Agric. Eng. Res. 2000, 75, 389–400. [Google Scholar] [CrossRef]
- Gao, J.; Nuyttens, D.; Lootens, P.; He, Y.; Pieters, J.G. Recognising weeds in a maize crop using a random forest machine-learning algorithm and near-infrared snapshot mosaic hyperspectral imagery. Biosyst. Eng. 2018, 170, 39–50. [Google Scholar] [CrossRef]
- de Souza, M.F.; Amaral, L.R.D.; de M Oliveira, S.R.; Coutinho, M.A.N.; Netto, C.F. Spectral differentiation of sugarcane from weeds. Biosyst. Eng. 2020, 190, 41–46. [Google Scholar] [CrossRef]
- Piron, A.; Leemans, V.; Kleynen, O.; Lebeau, F.; Destain, M.F. Selection of the most efficient wavelength bands for discriminating weeds from crop. Comput. Electron. Agric. 2008, 62, 141–148. [Google Scholar] [CrossRef]
- Chen, E.; Bao, H.; Dinh, N. Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems. Reliab. Eng. Syst. Saf. 2024, 250, 110266. [Google Scholar] [CrossRef]
- Carvalho, S.; Macel, M.; Schlerf, M.; Skidmore, A.K.; van der Putten, W.H. Soil biotic impact on plant species shoot chemistry and hyperspectral reflectance patterns. New Phytol. 2012, 196, 1133–1144. [Google Scholar] [CrossRef]
- Prudnikova, E.; Savin, I.; Vindeker, G.; Grubina, P.; Shishkonakova, E.; Sharychev, D. Influence of soil background on spectral reflectance of winter wheat crop canopy. Remote Sens. 2019, 11, 1932. [Google Scholar] [CrossRef]
- Hasler, O.K.; Winter, A.; Langer, D.D.; Bryne, T.H.; Johansen, T.A. Lightweight UAV payload for image spectroscopy and atmospheric irradiance measurements. In IGARSS 2023–2023 IEEE International Geoscience and Remote Sensing Symposium; IEEE: Piscataway Township, NJ, USA, 2023; pp. 4028–4031. [Google Scholar] [CrossRef]
- Reichle, R.H.; Koster, R.D. Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett. 2004, 31, 2–5. [Google Scholar] [CrossRef]
- Brocca, L.; Hasenauer, S.; Lacava, T.; Melone, F.; Moramarco, T.; Wagner, W.; Dorigo, W.; Matgen, P.; Martínez-Fernández, J.; Llorens, P.; et al. Soil moisture estimation through ASCAT and AMSR-E sensors: An intercomparison and validation study across Europe. Remote Sens. Environ. 2011, 115, 3390–3408. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar] [CrossRef] [PubMed]
- MicaSense, Best Practices: Collecting Data with MicaSense Sensors. Available online: https://support.micasense.com/hc/en-us/articles/219241067-I-need-to-fly-at-low-altitudes-how-can-I-improve-the-odds-this-data-can-be-processed- (accessed on 27 April 2023).
- Su, J.; Liu, C.; Coombes, M.; Hu, X.; Wang, C.; Xu, X.; Li, Q.; Guo, L.; Chen, W. Wheat yellow rust monitoring by learning from multispectral UAV aerial imagery. Comput. Electron. Agric. 2018, 155, 157–166. [Google Scholar] [CrossRef]
- Xiao, D.; Pan, Y.; Feng, J.; Yin, J.; Liu, Y.; He, L. Remote sensing detection algorithm for apple fire blight based on UAV multispectral image. Comput. Electron. Agric. 2022, 199, 107137. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Yang, C.; Xie, T.; Jiang, Z.; Hu, T.; Luo, Z.; Zhou, G.; Xie, J. Assessing the effect of real spatial resolution of in situ UAV multispectral images on seedling rapeseed growth monitoring. Remote Sens. 2020, 12, 1207. [Google Scholar] [CrossRef]
- Vlaamse Overheid; Databank Ondergrond Vlaanderen: Bodemverkenner 2022. Available online: https://www.dov.vlaanderen.be/portaal/?module=public-bodemverkenner (accessed on 12 December 2022).
- KMI, Klimatologische Overzichten van 2022. Available online: https://www.meteo.be/nl/klimaat/klimaat-van-belgie/klimatologisch-overzicht/2022/januari (accessed on 12 December 2022).
- KMI, Klimatologische Overzichten van 2020. Available online: https://www.meteo.be/nl/klimaat/klimaat-van-belgie/klimatologisch-overzicht/2016-2020/2020/januari (accessed on 12 December 2022).
- Waterinfo.Vlaanderen.be; Vlaamse Overheid: Waterinfo. Available online: https://waterinfo.vlaanderen.be/Rapporten (accessed on 12 December 2022).
- MicaSense RedEdge MX Processing Workflow (Including Reflectance Calibration) in Agisoft Metashape Professional. Available online: https://agisoft.freshdesk.com/support/solutions/articles/31000148780-micasense-rededge-mx-processing-workflow-including-reflectance-calibration-in-agisoft-metashape-pro#Appendix-C.-Controlling-reflectance-calculation (accessed on 5 September 2022).
- QGIS Documentation: Raster Analysis. Available online: https://docs.qgis.org/3.4/en/docs/user_manual/working_with_raster/raster_analysis.html (accessed on 1 April 2023).
- Bradski, G. The OpenCV Library. Dr. Dobb’s J. Softw. Tools 2000, 120, 122–125. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- MicaSense, What is the Center Wavelength and Bandwidth of each Filter for MicaSense Sensors? Available online: https://support.micasense.com/hc/en-us/articles/214878778-What-is-the-center-wavelength-and-bandwidth-of-each-filter-for-MicaSense-sensors- (accessed on 25 February 2020).
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color indices for weed identification under various soil, residue, and lighting conditions. Trans. Am. Soc. Agric. Eng. 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man. Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Roberts, D.R.; Bahn, V.; Ciuti, S.; Boyce, M.S.; Elith, J.; Guillera-Arroita, G.; Hauenstein, S.; Lahoz-Monfort, J.J.; Schröder, B.; Thuiller, W.; et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 2017, 40, 913–929. [Google Scholar] [CrossRef]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Deproost, P.; Elsen, F.; Vanongeval, L.; Geypens, M. Beredeneerd Beregenen van Stamslaboon en Voorjaarsspinazie op Zandleem-tot Leembodems. 2001. Available online: https://www.bdb.be/fr/base-de-connaissances/éditions/beredeneerd-beregenen-van-stamslaboon-en-voorjaarsspinazie-op-zandleem-tot-leembodems (accessed on 1 April 2023).
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-are index from quality of light on the forest floor. Ecol. Soc. Am. 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction. Int. J. Remote Sens. 2002, 23, 2537–2562. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS- MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Daniels, L.; Eeckhout, E.; Wieme, J.; Dejaegher, Y.; Audenaert, K.; Maes, W.H. Identifying the optimal radiometric calibration method for UAV-based multispectral imaging. Remote Sens. 2023, 15, 2909. [Google Scholar] [CrossRef]
- Heyndrickx, C.; (Affiliation). Personal communication, 2023.
- Perroy, R.L.; Sullivan, T.; Stephenson, N. Assessing the impacts of canopy openness and flight parameters on detecting a sub-canopy tropical invasive plant using a small unmanned aerial system. ISPRS J. Photogramm. Remote Sens. 2017, 125, 174–183. [Google Scholar] [CrossRef]
- Inamdar, D.; Kalacska, M.; Darko, P.O.; Arroyo-Mora, J.P.; Leblanc, G. Spatial response resampling (SR2): Accounting for the spatial point spread function in hyperspectral image resampling. MethodsX 2023, 10, 101998. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liao, W.; Nuyttens, D.; Lootens, P.; Vangeyte, J.; Pižurica, A.; He, Y.; Pieters, J.G. Fusion of pixel and object-based features for weed mapping using unmanned aerial vehicle imagery. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 43–53. [Google Scholar] [CrossRef]
- Bégué, A. Leaf area index, intercepted photosynthetically active radiation, and spectral vegetation indices: A sensitivity analysis for regular-clumped canopies. Remote Sens. Environ. 1993, 46, 45–59. [Google Scholar] [CrossRef]
- Carter, G.A.; Knapp, A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001, 88, 677–684. [Google Scholar] [CrossRef]
- Smith, A.M.; Blackshaw, R.E. Weed-crop discrimination using remote sensing: A detached leaf experiment. Weed Sci. Soc. Am. 2017, 17, 811–820. [Google Scholar] [CrossRef]
- Pant, P.; Heikkinen, V.; Hovi, A.; Korpela, I.; Hauta-kasari, M.; Tokola, T. Evaluation of simulated bands in airborne optical sensors for tree species identification. Remote Sens. Environ. 2013, 138, 27–37. [Google Scholar] [CrossRef]
- Jackson, C.M.; Adam, E. Machine learning classification of endangered tree species in a tropical submontane forest using worldview-2 multispectral satellite imagery and imbalanced dataset. Remote Sens. 2021, 13, 4970. [Google Scholar] [CrossRef]
- Ullah, S.; Shakir, M.; Iqbal, M.S.; Iqbal, A.; Ali, M.; Shafique, M.; Rehman, A.; Godwin, J. Identifying optimal waveband positions for discriminating Parthenium hysterophorus using hyperspectral data. Ecol. Inform. 2021, 64, 101362. [Google Scholar] [CrossRef]
- Lauwers, M.; De Cauwer, B.; Nuyttens, D.; Cool, S.R.; Pieters, J.G. Hyperspectral classification of Cyperus esculentus clones and morphologically similar weeds. Sensors 2020, 20, 2504. [Google Scholar] [CrossRef] [PubMed]
- De Castro, A.I.; Jurado-Expósito, M.; Gómez-Casero, M.T.; López-Granados, F. Applying neural networks to hyperspectral and multispectral field data for discrimination of cruciferous weeds in winter crops. Sci. World J. 2012, 2012. [Google Scholar] [CrossRef]
- Vrindts, E.; Baerdemaeker, J.D.E.; Ramon, H. Weed detection using canopy reflection. Precis. Agric. 2002, 3, 63–80. [Google Scholar] [CrossRef]
- Lauwers, M.; De Cauwer, B.; Nuyttens, D.; Pieters, J.G. Ghent University: Gent, Belgium, 2021; unpublished work.
- Alexandridis, T.K.; Tamouridou, A.A.; Pantazi, X.E.; Lagopodi, A.L.; Kashefi, J.; Ovakoglou, G.; Polychronos, V.; Moshou, D. Novelty detection classifiers in weed mapping: Silybum marianum detection on UAV multispectral images. Sensors 2017, 17, 2007. [Google Scholar] [CrossRef]
- Bah, M.D.; Hafiane, A.; Canals, R. Weeds detection in UAV imagery using SLIC and the hough transform. In Proceedings of the 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA), Montreal, QC, Canada, 28 November–1 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Ferreira, A.D.S.; Freitas, D.M.; da Silva, G.G.; Pistori, H.; Folhes, M.T. Weed detection in soybean crops using ConvNets. Comput. Electron. Agric. 2017, 143, 314–324. [Google Scholar] [CrossRef]
- Barrero, O.; Perdomo, S.A. RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Precis. Agric. 2018, 19, 809–822. [Google Scholar] [CrossRef]
- Sivakumar, A.N.V.; Li, J.; Scott, S.; Psota, E.; Jhala, A.J.; Luck, J.D.; Shi, Y. Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in UAV imagery. Remote Sens. 2020, 12, 2136. [Google Scholar] [CrossRef]
- Haq, M.A. CNN Based Automated Weed Detection System Using UAV Imagery. Comput. Syst. Sci. Eng. 2021, 42, 837–849. [Google Scholar] [CrossRef]
- Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Anwar, S. Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer. Precis. Agric. 2021, 22, 1711–1727. [Google Scholar] [CrossRef]
- Genze, N.; Ajekwe, R.; Güreli, Z.; Haselbeck, F.; Grieb, M.; Grimm, D.G. Deep learning-based early weed segmentation using motion blurred UAV images of sorghum fields. Comput. Electron. Agric. 2022, 202, 107388. [Google Scholar] [CrossRef]
- Xu, B.; Fan, J.; Chao, J.; Arsenijevic, N.; Werle, R.; Zhang, Z. Instance segmentation method for weed detection using UAV imagery in soybean fields. Comput. Electron. Agric. 2023, 211, 107994. [Google Scholar] [CrossRef]
- Cai, Y.; Zeng, F.; Xiao, J.; Ai, W.J.; Kang, G.; Lin, Y.; Cai, Z.; Shi, H.; Zhong, S.; Yue, X. Attention-aided semantic segmentation network for weed identification in pineapple field. Comput. Electron. Agric. 2023, 210, 107881. [Google Scholar] [CrossRef]
- Gallo, I.; Rehman, A.U.; Dehkordi, R.H.; Landro, N.; La Grassa, R.; Boschetti, M. Deep object detection of crop weeds: Performance of YOLOv7 on a real case dataset from UAV images. Remote Sens. 2023, 15, 539. [Google Scholar] [CrossRef]
- El Imanni, H.S.; El Harti, A.; Bachaoui, E.M.; Mouncif, H.; Eddassouqui, F.; Hasnai, M.A.; Zinelabidine, M.I. Multispectral UAV data for detection of weeds in a citrus farm using machine learning and Google Earth Engine: Case study of Morocco. Remote Sens. Appl. Soc. Environ. 2023, 30, 100941. [Google Scholar] [CrossRef]
- Bah, M.D.; Hafiane, A.; Canals, R. Deep learning with unsupervised data labeling for weed detection in line crops in UAV images. Remote Sens. 2018, 10, 1690. [Google Scholar] [CrossRef]
- Che’ya, N.N.; Dunwoody, E.; Gupta, M. Assessment of weed classification using hyperspectral reflectance and optimal multispectral UAV imagery. Agronomy 2021, 11, 1435. [Google Scholar] [CrossRef]
- de Camargo, T.; Schirrmann, M.; Landwehr, N.; Dammer, K.H.; Pflanz, M. Optimized deep learning model as a basis for fast UAV mapping of weed species in winter wheat crops. Remote Sens. 2021, 13, 1704. [Google Scholar] [CrossRef]
- Singh, V.; Singh, D. Development of an approach for early weed detection with UAV imagery. In Proceedings of the IGARSS 2022–2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 4879–4882. [Google Scholar] [CrossRef]
- Gašparović, M.; Zrinjski, M.; Barković, Đ.; Radočaj, D. An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 2020, 173, 105385. [Google Scholar] [CrossRef]
- Barbu, A.; Mayo, D.; Alverio, J.; Luo, W.; Wang, C.; Gutfreund, D.; Tenenbaum, J.; Katz, B. ObjectNet: A large-scale bias-controlled dataset for pushing the limits of object recognition models. Adv. Neural Inf. Process. Syst. 2019, 32, 1–11. [Google Scholar]
- Hu, K.; Coleman, G.; Zeng, S.; Wang, Z.; Walsh, M. Graph weeds net: A graph-based deep learning method for weed recognition. Comput. Electron. Agric. 2020, 174, 105520. [Google Scholar] [CrossRef]
- Chen, D.; Lu, Y.; Li, Z.; Young, S. Performance evaluation of deep transfer learning on multi-class identification of common weed species in cotton production systems. Comput. Electron. Agric. 2022, 198, 107091. [Google Scholar] [CrossRef]
- Jin, X.; Bagavathiannan, M.; McCullough, P.E.; Chen, Y.; Yu, J. A deep learning-based method for classification, detection, and localization of weeds in turfgrass. Pest Manag. Sci. 2022, 78, 4809–4821. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Sun, Y.; Che, J.; Bagavathiannan, M.; Yu, J.; Chen, Y. A novel deep learning-based method for detection of weeds in vegetables. Pest Manag. Sci. 2022, 78, 1861–1869. [Google Scholar] [CrossRef] [PubMed]
- Hammad, M.; Johan, S.; Khalid, P.; Arif, M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 2021, 22, 2053–2091. [Google Scholar] [CrossRef]
- GC, S.; Zhang, Y.; Koparan, C.; Ahmed, M.R.; Howatt, K.; Sun, X. Weed and crop species classification using computer vision and deep learning technologies in greenhouse conditions. J. Agric. Food Res. 2022, 9, 100325. [Google Scholar] [CrossRef]
Oudenaarde | Merelbeke | Meulebeke | Houthulst | |
---|---|---|---|---|
Phaseolus vulgaris (commercial) variety | Koala and Nagano | Fresano | Sintra | Sintra |
Datura stramonium (botanical) variety | var. stramonium | var. stramonium | var. tatula | var. stramonium |
Soil type | sandy loam | sandy loam | sandy loam | sandy loam |
Number of D. stramonium plants in screened area | >400 | 35 | 34 | 90 |
Screened area (m2) | 2445 | 380 | 735 | 730 |
Planting date | 26 June 2020 | 14 May 2020 | 15 July 2022 | 5 July 2022 |
Date of image collection | 2 September 2020 (68 *, BBCH 7) | 12 July 2020 (59 *, BBCH 7) | 15 September 2022 (67 *, BBCH 7) | 11 September 2022 (68 *, BBCH 7) |
Date of harvest | 29 July 2020 (76 *) | 20 September 2022 (72 *) | 19 September 2022 (76 *) | |
Inter-row spacing [cm] | 30 | 37.5 | 37.5 | |
Intra-row spacing [cm] | 10.5 | 15 | 8.5 | 8.6 |
RGB camera type | Sony ILCE-6000 | Sony ILCE-6000 | Mavic 2 Pro | Mavic 2 Pro |
Flight height (RGB) [m] | 16 | 20 | 10 | 10 |
RGB ground sampling distance [cm] | 0.16 | 0.23 | 0.24 | 0.24 |
Time of multispectral image collection | 13 h 12–13 h 27 | 13 h 20–13 h 27 | 12 h 25–12 h 35 | 10 h 49–10 h 54 |
Cloudiness | PC | CS | PCS | PCS |
Flight height (multispectral) [m] | 30 | 30 | 12 | 30 |
Multispectral ground sampling distance [cm] | 2.08 | 2.08 | 0.83 | 2.08 |
Number of training pixels for common bean | 60,584 | 15,152 | 9049 | 1721 |
Number of training pixels for D. stramonium | 17,334 | 1779 | 3753 | 195 |
Location | Dataset | Threshold [Pixels] | Recall | TNR | Precision | F1 |
---|---|---|---|---|---|---|
Oudenaarde | Training | 1 | 0.96 | 0.49 | 0.65 | 0.78 |
2 | 0.96 | 0.56 | 0.69 | 0.80 | ||
3 | 0.96 | 0.62 | 0.72 | 0.82 | ||
4 | 0.96 | 0.67 | 0.74 | 0.84 | ||
5 | 0.95 | 0.74 | 0.79 | 0.86 | ||
6 | 0.94 | 0.75 | 0.79 | 0.86 | ||
Validation | 4 | 0.99 | 0.95 | 0.95 | 0.97 | |
Meulebeke | Training | 4 | 0.91 | 0.72 | 0.53 | 0.67 |
11 | 0.88 | 0.93 | 0.81 | 0.85 | ||
16 | 0.88 | 0.96 | 0.88 | 0.88 | ||
Houthulst | Training | 4 | 0.53 | 0.97 | 0.94 | 0.68 |
Merelbeke | Training | 4 | 0.36 | 0.92 | 0.56 | 0.43 |
5 | 0.36 | 0.94 | 0.63 | 0.45 |
(Simulated) Flight Height [m] | Ground Sampling Distance [cm] | Dataset | Threshold [Pixels] | Recall | TNR | Precision | F1 |
---|---|---|---|---|---|---|---|
30 | Training | 1 | 0.96 | 0.49 | 0.65 | 0.78 | |
2 | 0.96 | 0.56 | 0.69 | 0.80 | |||
3 | 0.96 | 0.62 | 0.72 | 0.82 | |||
2.01 | 4 | 0.96 | 0.67 | 0.74 | 0.84 | ||
5 | 0.95 | 0.74 | 0.79 | 0.86 | |||
6 | 0.94 | 0.75 | 0.79 | 0.86 | |||
Validation | 4 | 0.99 | 0.95 | 0.95 | 0.97 | ||
40 | Training | 1 | 0.91 | 0.61 | 0.70 | 0.79 | |
2 | 0.91 | 0.67 | 0.73 | 0.81 | |||
2.68 | 3 | 0.90 | 0.78 | 0.80 | 0.85 | ||
4 | 0.89 | 0.83 | 0.84 | 0.86 | |||
Validation | 2 | 0.97 | 0.95 | 0.95 | 0.96 | ||
Training | 1 | 0.85 | 0.83 | 0.83 | 0.84 | ||
2 | 0.83 | 0.86 | 0.86 | 0.84 | |||
50 | 3.35 | 3 | 0.78 | 0.87 | 0.86 | 0.82 | |
4 | 0.75 | 0.90 | 0.88 | 0.81 | |||
Validation | 1 | 0.94 | 0.96 | 0.96 | 0.95 | ||
60 | Training | 1 | 0.78 | 0.83 | 0.82 | 0.80 | |
2 | 0.73 | 0.87 | 0.85 | 0.78 | |||
4.10 | 3 | 0.66 | 0.88 | 0.85 | 0.74 | ||
4 | 0.62 | 0.93 | 0.90 | 0.73 | |||
Validation | 1 | 0.85 | 0.95 | 0.94 | 0.89 |
Location | Method | Threshold [Pixels] | Recall | TNR | Precision | F1 |
---|---|---|---|---|---|---|
Meulebeke | R-U | 4 | 1.00 | 0.00 | 0.25 | 0.40 |
VI-U | 4 | 1.00 | 0.23 | 0.31 | 0.47 | |
R-CDF | 4 | 0.41 | 0.87 | 0.52 | 0.46 | |
10 | 0.09 | 0.93 | 0.30 | 0.14 | ||
VI-CDF | 4 | 0.26 | 0.93 | 0.56 | 0.36 | |
Houthulst | R-U | 4 | 0.06 | 0.95 | 0.50 | 0.10 |
VI-U | 4 | 0.01 | 1.00 | 1.00 | 0.02 | |
R-CDF | 4 | 0.80 | 0.76 | 0.75 | 0.77 | |
22 | 0.38 | 0.97 | 0.92 | 0.54 | ||
VI-CDF | 4 | 0.80 | 0.81 | 0.79 | 0.80 | |
14 | 0.52 | 0.97 | 0.94 | 0.67 | ||
Merelbeke | R-U | 4 | 1.00 | 0.00 | 0.22 | 0.36 |
VI-U | 4 | 0.00 | 1.00 | - | 0.00 | |
R-CDF | 4 | 0.54 | 0.66 | 0.31 | 0.39 | |
27 | 0.11 | 0.92 | 0.27 | 0.15 | ||
VI-CDF | 4 | 0.54 | 0.69 | 0.33 | 0.41 | |
12 | 0.21 | 0.92 | 0.43 | 0.29 |
Location | Threshold [Pixels] | Recall | TNR | Precision | F1 |
---|---|---|---|---|---|
Oudenaarde | 4 | 0.99 | 0.92 | 0.93 | 0.96 |
5 | 0.99 | 0.95 | 0.95 | 0.97 | |
Meulebeke | 4 | 0.44 | 0.96 | 0.79 | 0.57 |
Houthulst | 4 | 0.76 | 0.82 | 0.79 | 0.77 |
11 | 0.49 | 0.97 | 0.94 | 0.64 | |
Merelbeke | 4 | 0.61 | 0.70 | 0.36 | 0.45 |
16 | 0.21 | 0.94 | 0.50 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauwers, M.; De Cauwer, B.; Nuyttens, D.; Maes, W.H.; Pieters, J.G. Multispectral UAV Image Classification of Jimson Weed (Datura stramonium L.) in Common Bean (Phaseolus vulgaris L.). Remote Sens. 2024, 16, 3538. https://doi.org/10.3390/rs16183538
Lauwers M, De Cauwer B, Nuyttens D, Maes WH, Pieters JG. Multispectral UAV Image Classification of Jimson Weed (Datura stramonium L.) in Common Bean (Phaseolus vulgaris L.). Remote Sensing. 2024; 16(18):3538. https://doi.org/10.3390/rs16183538
Chicago/Turabian StyleLauwers, Marlies, Benny De Cauwer, David Nuyttens, Wouter H. Maes, and Jan G. Pieters. 2024. "Multispectral UAV Image Classification of Jimson Weed (Datura stramonium L.) in Common Bean (Phaseolus vulgaris L.)" Remote Sensing 16, no. 18: 3538. https://doi.org/10.3390/rs16183538
APA StyleLauwers, M., De Cauwer, B., Nuyttens, D., Maes, W. H., & Pieters, J. G. (2024). Multispectral UAV Image Classification of Jimson Weed (Datura stramonium L.) in Common Bean (Phaseolus vulgaris L.). Remote Sensing, 16(18), 3538. https://doi.org/10.3390/rs16183538