Regional-Scale Image Segmentation of Sandy Beaches in Southeastern Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Aerial Images
2.1.2. Beach Polygons
2.2. Method
2.2.1. Construction of the Deep Learning Pipeline
2.2.2. Evaluation of the Model Performance
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- James, R.J. From beaches to beach environments: Linking the ecology, human-use and management of beaches in Australia. Ocean Coast. Manag. 2000, 43, 495–514. [Google Scholar] [CrossRef]
- Defeo, O.; McLachlan, A.; Schoeman, D.S.; Schlacher, T.A.; Dugan, J.; Jones, A.; Lastra, M.; Scapini, F. Threats to sandy beach ecosystems: A review. Estuar. Coast. Shelf Sci. 2009, 81, 1–12. [Google Scholar] [CrossRef]
- Rocha, C.; Antunes, C.; Catita, C. Coastal indices to assess sea-level rise impacts—A brief review of the last decade. Ocean Coast. Manag. 2023, 237, 106536. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Ranasinghe, R.; Mentaschi, L.; Plomaritis, T.A.; Athanasiou, P.; Luijendijk, A.; Feyen, L. Reply to: Sandy beaches can survive sea-level rise. Nat. Clim. Chang. 2020, 10, 996–997. [Google Scholar] [CrossRef]
- Konlechner, T.M.; Kennedy, D.M.; O’Grady, J.J.; Leach, C.; Ranasinghe, R.; Carvalho, R.C.; Luijendijk, A.P.; McInnes, K.L.; Ierodiaconou, D. Mapping spatial variability in shoreline change hotspots from satellite data; a case study in southeast Australia. Estuar. Coast. Shelf Sci. 2020, 246, 107018. [Google Scholar] [CrossRef]
- Nanson, R.; Bishop-Taylor, R.; Sagar, S.; Lymburner, L. Geomorphic insights into Australia’s coastal change using a national dataset derived from the multi-decadal Landsat archive. Estuar. Coast. Shelf Sci. 2022, 265, 107712. [Google Scholar] [CrossRef]
- Short, A.D. Australian Beach Systems—Nature and Distribution. J. Coast. Res. 2006, 22, 11–27. [Google Scholar] [CrossRef]
- Sagar, S.; Roberts, D.; Bala, B.; Lymburner, L. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 2017, 195, 153–169. [Google Scholar] [CrossRef]
- Vos, K.; Deng, W.; Harley, M.D.; Turner, I.L.; Splinter, K.D.M. Beach-face slope dataset for Australia. Earth Syst. Sci. Data 2022, 14, 1345–1357. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 6641. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Simmons, J.A.; Turner, I.L. Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery. Coast. Eng. 2019, 150, 160–174. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, J.; Zheng, F.; Wang, H.; Yang, H. An Overview of Coastline Extraction from Remote Sensing Data. Remote Sens. 2023, 15, 4865. [Google Scholar] [CrossRef]
- Warrick, J.A.; Buscombe, D.; Vos, K.; Bryan, K.R.; Castelle, B.; Cooper, J.A.G.; Harley, M.D.; Jackson, D.W.T.; Ludka, B.C.; Masselink, G.; et al. Coastal shoreline change assessments at global scales. Nat. Commun. 2024, 15, 2316. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Kennedy, D.M.; McSweeney, S. Decadal changes in vegetation cover within coastal dunes at the regional scale in Victoria, SE Australia. J. Environ. Manag. 2024, 351, 119622. [Google Scholar] [CrossRef]
- O’Grady, J.G.; McInnes, K.L.; Hemer, M.A.; Hoeke, R.K.; Stephenson, A.G.; Colberg, F. Extreme Water Levels for Australian Beaches Using Empirical Equations for Shoreline Wave Setup. J. Geophys. Res. Ocean. 2019, 124, 5468–5484. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Fletcher, C.H.; Frazer, N.; Erikson, L.; Storlazzi, C.D. Doubling of coastal flooding frequency within decades due to sea-level rise. Sci. Rep. 2017, 7, 1399. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Arellano-Verdejo, J.; Santos-Romero, M.; Lazcano-Hernandez, H.E. Use of semantic segmentation for mapping Sargassum on beaches. PeerJ 2022, 10, e13537. [Google Scholar] [CrossRef]
- Buscombe, D.; Goldstein, E.B. A Reproducible and Reusable Pipeline for Segmentation of Geoscientific Imagery. Earth Space Sci. 2022, 9, e2022EA002332. [Google Scholar] [CrossRef]
- Chang, L.; Chen, Y.T.; Wu, M.C.; Alkhaleefah, M.; Chang, Y.L. U-Net for Taiwan Shoreline Detection from SAR Images. Remote Sens. 2022, 14, 5135. [Google Scholar] [CrossRef]
- Aghdami-Nia, M.; Shah-Hosseini, R.; Rostami, A.; Homayouni, S. Automatic coastline extraction through enhanced sea-land segmentation by modifying Standard U-Net. Int. J. Appl. Earth Obs. Geoinf. 2022, 109, 102785. [Google Scholar] [CrossRef]
- Scala, P.; Manno, G.; Ciraolo, G. Semantic segmentation of coastal aerial/satellite images using deep learning techniques: An application to coastline detection. Comput. Geosci. 2024, 192, 105704. [Google Scholar] [CrossRef]
- Wernette, P.A.; Buscombe, D.D.; Favela, J.; Fitzpatrick, S.; Goldstein, E.; Enwright, N.M.; Dunand, E. Coast Train–Labeled Imagery for Training and Evaluation of Data-Driven Models for Image Segmentation; US Geological Survey: Tallahassee, FL, USA, 2022. [CrossRef]
- OpenStreetMap Contributors. Planet Dump Retrieved from https://planet.osm.org. 2017. Available online: https://www.openstreetmap.org (accessed on 20 June 2024).
- Hijmans, R.J. Terra: Spatial Data Analysis. 2024. R Package Version 1.7-80. Available online: https://rspatial.github.io/terra/ (accessed on 20 June 2024).
- Australian Bureau of Statistics. Digital Boundary Files. ABS, July 2021–June 2026. Available online: https://www.abs.gov.au/statistics/standards/australian-statistical-geography-standard-asgs-edition-3/jul2021-jun2026/access-and-downloads/digital-boundary-files (accessed on 6 June 2024).
- Padgham, M.; Rudis, B.; Lovelace, R.; Salmon, M. osmdata. J. Open Source Softw. 2017, 2, 305. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R., Eds.; Curran Associates, Inc.: Nice, France, 2019; Volume 32. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—ICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Iakubovskii, P. Segmentation Models Pytorch. 2019. Available online: https://github.com/qubvel/segmentation_models.pytorch (accessed on 18 July 2024).
- Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; Volume 97, pp. 6105–6114. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; Conference Track Proceedings. Bengio, Y., LeCun, Y., Eds.; [Google Scholar]
- Wright, L.; Short, A. Morphodynamic variability of surf zones and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Gallop, S.L.; Kennedy, D.M.; Loureiro, C.; Naylor, L.A.; Muñoz-Pérez, J.J.; Jackson, D.W.; Fellowes, T.E. Geologically controlled sandy beaches: Their geomorphology, morphodynamics and classification. Sci. Total Environ. 2020, 731, 139123. [Google Scholar] [CrossRef]
- Short, A.D. Australian Coastal Systems: Beaches, Barriers and Sediment Compartments, 1st ed.; Coastal Research Library, Springer International Publishing AG: Cham, Switzerland, 2020; Volume 32, pp. 1–1241. [Google Scholar] [CrossRef]
- Anthony, E.J.; Aagaard, T. The lower shoreface: Morphodynamics and sediment connectivity with the upper shoreface and beach. Earth-Sci. Rev. 2020, 210, 103334. [Google Scholar] [CrossRef]
- Harley, M.D.; Kinsela, M.A.; Sánchez-García, E.; Vos, K. Shoreline change mapping using crowd-sourced smartphone images. Coast. Eng. 2019, 150, 175–189. [Google Scholar] [CrossRef]
- Pucino, N.; Kennedy, D.M.; Carvalho, R.C.; Allan, B.; Ierodiaconou, D. Citizen science for monitoring seasonal-scale beach erosion and behaviour with aerial drones. Sci. Rep. 2021, 11, 3935. [Google Scholar] [CrossRef]
- Ierodiaconou, D.; Kennedy, D.M.; Pucino, N.; Allan, B.M.; McCarroll, R.J.; Ferns, L.W.; Carvalho, R.C.; Sorrell, K.; Leach, C.; Young, M. Citizen science unoccupied aerial vehicles: A technique for advancing coastal data acquisition for management and research. Cont. Shelf Res. 2022, 244, 104800. [Google Scholar] [CrossRef]
VIC | NSW | |
---|---|---|
IoU for training set | 0.69 | 0.72 |
IoU for validation set | 0.70 | 0.74 |
VIC Y VIC | NSW Y VIC | NSW Y NSW | VIC Y NSW | |
---|---|---|---|---|
No. of Y | 556 | 593 | 593 | 556 |
No. of | 7650 | 12,724 | 6718 | 11,397 |
Area of Y (km2) | 47.43 | 74.54 | 74.54 | 47.43 |
Area of (km2) | 59.48 | 53.84 | 67.38 | 58.37 |
Mean IoU | 0.66 | 0.33 | 0.76 | 0.45 |
Mean IoY | 0.88 | 0.55 | 0.90 | 0.63 |
Mean Io | 2.93 | 2.99 | 1.35 | 2.00 |
Median IoU | 0.78 | 0.34 | 0.85 | 0.49 |
Median IoY | 0.96 | 0.60 | 0.96 | 0.68 |
Median Io | 1.08 | 0.93 | 1.05 | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, S.Y.; O’Grady, J.; Gregory, R.; Lynton, D. Regional-Scale Image Segmentation of Sandy Beaches in Southeastern Australia. Remote Sens. 2024, 16, 3534. https://doi.org/10.3390/rs16183534
Yong SY, O’Grady J, Gregory R, Lynton D. Regional-Scale Image Segmentation of Sandy Beaches in Southeastern Australia. Remote Sensing. 2024; 16(18):3534. https://doi.org/10.3390/rs16183534
Chicago/Turabian StyleYong, Suk Yee, Julian O’Grady, Rebecca Gregory, and Dylan Lynton. 2024. "Regional-Scale Image Segmentation of Sandy Beaches in Southeastern Australia" Remote Sensing 16, no. 18: 3534. https://doi.org/10.3390/rs16183534
APA StyleYong, S. Y., O’Grady, J., Gregory, R., & Lynton, D. (2024). Regional-Scale Image Segmentation of Sandy Beaches in Southeastern Australia. Remote Sensing, 16(18), 3534. https://doi.org/10.3390/rs16183534