Identification of Spatial Distribution of Afforestation, Reforestation, and Deforestation and Their Impacts on Local Land Surface Temperature in Yangtze River Delta and Pearl River Delta Urban Agglomerations of China
Abstract
:1. Introduction
2. Materials and Data
2.1. Study Area
2.2. Land Cover Dataset
2.3. Remote Sensing Data
3. Methodology
3.1. Knowledge Criteria-Based Spatial Analysis Model Construction
3.2. Atmospheric Correction Method
3.3. Moving Window Searching Strategy and Spatial–Temporal Pattern Changes Analysis Method
4. Results
4.1. Accuracy Assessment of the Spatiotemporal Pattern of Afforestation, Reforestation, and Deforestation Maps
4.2. Historical Distribution of Afforestation, Reforestation, and Deforestation
4.3. Quantifying the Impact of Actual Afforestation, Reforestation, and Deforestation on LST
5. Discussion
5.1. Spatial–Temporal Patterns of Afforestation, Reforestation, and Deforestation in Two Regions
5.2. Effect of Forest on Surface Temperature in Different Regions
5.3. Effect of Forest on Surface Temperature in Different Seasons
5.4. Deficiencies and Prospects
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Period | Acquisition Date | Satellite | Cloud | Path/Row |
---|---|---|---|---|
2010 | 10 March 2011 29 May 2011 2 September 2011 20 December 2010 | Landsat 5 TM | 0% 1% 17% 2% | 117/039 |
17 March 2011 21 June 2011 19 September 2009 5 December 2008 | Landsat 5 TM | 14% 0% 2% 3% | 118/038 | |
24 March 2008 20 July 2010 19 September 2009 27 December 2010 | Landsat 5 TM | 0% 6% 12% 7% | 118/039 | |
18 April 2011 15 June 2009 21 October 2009 27 December 2010 | Landsat 5 TM | 0% 14% 1% 2% | 118/040 | |
10 February 2010 23 July 2011 22 September 2010 27 December 2010 | Landsat 5 TM | 8% 3% 4% 1% | 118/041 | |
8 March 2011 2 June 2008 7 September 2008 2 December 2010 | Landsat 5 TM | 9% 12% 12% 0% | 119/037 | |
29 March 2007 22 June 2009 31 October 2010 18 December 2010 | Landsat 5 TM | 2% 17% 0%, 5% | 119/038 | |
29 March 2007 6 June 2009 10 September 2009 18 December 2010 | Landsat 5 TM | 0% 19% 6% 7% | 119/039 | |
29 March 2007 6 June 2009 16 September 2011 12 December 2008 | Landsat 5 TM | 1% 4% 2% 9% | 119/040 | |
8 March 2011 6 June 2009 16 September 2011 26 November 2008 | Landsat 5 TM | 8% 0% 3% 3% | 119/041 | |
12 March 2010 3 June 2011 13 August 2008 9 December 2010 | Landsat 5 TM | 7% 3% 17% 5% | 120/036 | |
28 March 2010 24 June 2007 23 September 2011 25 December 2010 | Landsat 5 TM | 11% 3% 2% 1% | 120/037 | |
28 March 2010 13 June 2009 20 September 2010 9 December 2010 | Landsat 5 TM | 2% 2% 15% 1% | 120/038 | |
28 March 2010 13 June 2009 12 September 2007 9 December 2010 | Landsat 5 TM | 0% 1% 0% 0% | 120/039 | |
28 March 2010 19 June 2011 28 September 2007 9 December 2010 | Landsat 5 TM | 1% 11% 2% 0% | 120/040 | |
19 March 2010 28 June 2011 23 September 2011 14 December 2010 | Landsat 5 TM | 2% 12% 11% 1% | 121/037 | |
19 March 2010 4 June 2009 14 September 2011 10 December 2008 | Landsat 5 TM | 0%, 5% 17% 0% | 121/038 | |
19 March 2010 4 June 2009 14 September 2011 10 December 2008 | Landsat 5 TM | 0% 0% 10% 0% | 121/039 | |
26 March 2010 1 June 2011 18 September 2010 7 December 2010 | Landsat 5 TM | 0% 20% 2% 0% | 122/038 | |
26 March 2010 27 June 2009 18 September 2010 7 December 2010 | Landsat 5 TM | 0% 11% 1% 0% | 122/039 | |
2020 | 16 March 2019 1 June 2018 24 September 2019 7 December 2017 | Landsat 8 OLI/TIRS | 1% 6.35% 8% 7.14% | 117/039 |
28 March 2021 2 June 2018 28 September 2018 22 December 2020 | Landsat 8 OLI/TIRS | 5.45% 9.33 16.82% 0.61% | 118/038 | |
28 March 2021 16 June 2021 28 September 2018 22 December 2020 | Landsat 8 OLI/TIRS | 15.73% 17.06% 18.78% 0.81% | 118/039 | |
1 March 2017 5 June 2017 20 September 2021 22 December 2020 | Landsat 8 OLI/TIRS | 1.7% 14.55% 9.19% 0.27% | 118/040 | |
1 March 2017 16 June 2015 17 September 2020 17 December 2018 | Landsat 8 OLI/TIRS | 0.28% 7.19% 15.54% 2.35% | 118/041 | |
27 March 2018 19 May 2020 24 September 2020 11 December 2019 | Landsat 8 OLI/TIRS | 0.47% 1.22% 19.85% 0.71% | 119/037 | |
27 March 2018 23 June 2021 8 September 2020 5 December 2017 | Landsat 8 OLI/TIRS | 8.95% 3.98% 13.98% 0.68% | 119/038 | |
11 March 2018 23 June 2021 27 September 2021 5 December 2017 | Landsat 8 OLI/TIRS | 1.36% 8.32% 0.62% 18.86% | 119/039 | |
11 March 2018 23 June 2021 27 September 2021 11 December 2019 | Landsat 8 OLI/TIRS | 0.62% 15.86% 0.02% 0.14% | 119/040 | |
11 March 2018 4 June 2020 27 September 2021 11 December 2019 | Landsat 8 OLI/TIRS | 0.03% 7.97% 0.09% 2.28% | 119/041 | |
23 March 2020 16 June 2016 29 September 2019 4 December 2020 | Landsat 8 OLI/TIRS | 4.79% 10.66% 3.27% 5.62% | 120/036 | |
7 March 2020 6 June 2018 29 September 2019 20 December 2020 | Landsat 8 OLI/TIRS | 0.04% 0.79% 15.42% 18.06% | 120/037 | |
26 March 2021 6 June 2018 18 September 2021 20 December 2020 | Landsat 8 OLI/TIRS | 0.23% 4.8% 1.81% 0.48% | 120/038 | |
26 March 2021 27 June 2020 29 September 2019 2 December 2019 | Landsat 8 OLI/TIRS | 0.01% 0.67% 1.12% 3.6% | 120/039 | |
26 March 2021 11 June 2020 29 September 2019 7 December 2021 | Landsat 8 OLI/TIRS | 0.01% 9.94% 1.97% 0.6% | 120/040 | |
14 March 2020 21 June 2020 14 September 2017 14 December 2021 | Landsat 8 OLI/TIRS | 4.45% 7.96% 0.05% 0.12% | 121/037 | |
14 March 2020 5 June 2021 14 September 2017 9 December 2019 | Landsat 8 OLI/TIRS | 1.24% 2.66% 1.38% 5.39% | 121/038 | |
14 March 2020 5 June 2021 6 September 2020 30 December 2021 | Landsat 8 OLI/TIRS | 3.27% 4.23% 4.44% 0.13% | 121/039 | |
5 March 2020 25 June 2020 27 September 2019 13 December 2018 | Landsat 8 OLI/TIRS | 4.98% 4.4% 15.83% 0.99% | 122/038 | |
5 March 2020 9 June 2020 16 September 2021 21 December 2021 | Landsat 8 OLI/TIRS | 3.88% 4.01% 4.99% 0.22% | 122/039 |
Period | Acquisition Date | Satellite | Cloud | Path/Row |
---|---|---|---|---|
2010 | 16 March 2009 16 May 2008 8 September 2009 10 December 2008 | Landsat 5 TM | 5% 10% 15% 0% | 121/044 |
19 March 2010 4 June 2009 19 September 2009 13 December 2009 | Landsat 5 TM | 10% 0% 2% 14% | 121/045 | |
26 March 2010 1 June 2011 18 September 2010 4 December 2009 | Landsat 5 TM | 0% 13% 11% 1% | 122/043 | |
26 March 2010 11 June 2011 18 September 2010 4 December 2009 | Landsat 5 TM | 6% 0% 19% 3% | 122/044 | |
26 March 2010 1 June 2011 18 September 2020 15 December 2009 | Landsat 5 TM | 3% 0% 10% 4% | 122/045 | |
14 March 2009 21 June 2010 28 September 2011 8 December 2008 11 October 2010 | Landsat 5 TM | 2% 4% 14% 10% | 123/043 | |
14 March 2009 29 June 2007 6 September 2009 30 December 2010 | Landsat 5 TM | 1% 4% 16% 1% | 123/044 | |
11 March 2009 1 May 2009 22 September 2009 30 December 2010 | Landsat 5 TM | 18% 1% 8% 0% | 123/045 | |
2020 | 9 March 2018 16 June 2019 9 September 2021 14 December 2021 | Landsat 8 OLI/TIRS | 0.77% 15.89% 18.76% 6.07% | 121/044 |
1 March 2021 10 June 2017 4 September 2019 9 December 2019 | Landsat 8 OLI/TIRS | 6.11% 11.64% 18.64% 13.77% | 121/045 | |
20 April 2019 28 August 2020 27 September 2021 5 December 2021 | Landsat 8 OLI/TIRS | 3.65% 5.89% 5.99% 0.02% | 122/043 | |
26 March 2016 17 June 2017 27 September 2019 2 December 2020 | Landsat 8 OLI/TIRS | 10.93% 17.34% 4.73% 16.53% | 122/044 | |
19 March 2019 7 June 2019 27 September 2019 2 December 2020 | Landsat 8 OLI/TIRS | 4.02% 19% 15.53% 6.16% | 122/045 | |
7 March 2018 16 June 2020 25 September 2016 7 December 2019 | Landsat 8 OLI/TIRS | 5.37% 16.54% 16.89% 0.02% | 123/043 | |
23 March 2018 14 June 2019 18 September 2019 12 December 2021 | Landsat 8 OLI/TIRS | 0.03% 7.15% 15.63% 1.51% | 123/044 | |
23 March 2018 19 June 2020 15 September 2018 12 December 2021 | Landsat 8 OLI/TIRS | 0.51% 18.87% 10.96% 2.69% | 123/045 |
References
- Brockhaus, M.; Di Gregorio, M.; Djoudi, H.; Moeliono, M.; Pham, T.T.; Wong, G.Y. The forest frontier in the Global South: Climate change policies and the promise of development and equity. AMBIO 2021, 50, 2238–2255. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, H.; Bastos, A.; Das, A.J.; Esquivel-Muelbert, A.; Hammond, W.M.; Martinez-Vilalta, J.; McDowell, N.G.; Powers, J.S.; Pugh, T.A.M.; Ruthrof, K.X.; et al. Climate Change Risks to Global Forest Health: Emergence of Unexpected Events of Elevated Tree Mortality Worldwide. Annu. Rev. Plant Biol. 2022, 73, 673–702. [Google Scholar] [CrossRef] [PubMed]
- Khadka, D.; Babel, M.S.; Tingsanchali, T.; Penny, J.; Djordjevic, S.; Abatan, A.A.; Giardino, A. Evaluating the impacts of climate change and land-use change on future droughts in northeast Thailand. Sci. Rep. 2024, 14, 9746. [Google Scholar] [CrossRef]
- Cvjetković, B.; Mataruga, M. Afforestation and Its Climate Change Impact. In Life on Land; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–15. [Google Scholar] [CrossRef]
- Shen, W.; He, J.; Huang, C.; Li, M. Quantifying the Actual Impacts of Forest Cover Change on Surface Temperature in Guangdong, China. Remote Sens. 2020, 12, 2354. [Google Scholar] [CrossRef]
- Wang, H.; Yue, C.; Luyssaert, S. Reconciling different approaches to quantifying land surface temperature impacts of afforestation using satellite observations. Biogeosciences 2023, 20, 75–92. [Google Scholar] [CrossRef]
- Yuan, G.; Tang, W.; Zuo, T.; Li, E.; Zhang, L.; Liu, Y. Impacts of afforestation on land surface temperature in different regions of China. Agric. For. Meteorol. 2022, 318, 108901. [Google Scholar] [CrossRef]
- Liu, Q.; Shen, W.; Wang, T.; He, J.; Cao, P.; Sun, T.; Zhang, Y.; Ye, W.; Huang, C. Impacts of forest cover change on local temperature in Yangtze River Delta and Pearl River Delta urban agglomerations of China. Agric. For. Meteorol. 2024, 357, 110205. [Google Scholar] [CrossRef]
- Shen, W.; He, J.; He, T.; Hu, X.; Huang, C. Biophysical Effects of Afforestation on Land Surface Temperature in Guangdong Province, Southern China. J. Geophys. Res. Biogeosci. 2022, 127, e2022JG006913. [Google Scholar] [CrossRef]
- Bright, R.M.; Davin, E.; O’Halloran, T.; Pongratz, J.; Zhao, K.; Cescatti, A. Local temperature response to land cover and management change driven by non-radiative processes. Nat. Clim. Chang. 2017, 7, 296–302. [Google Scholar] [CrossRef]
- Choi, Y.; Lim, C.H.; Chung, H.I.; Kim, Y.; Cho, H.J.; Hwang, J.; Kraxner, F.; Biging, G.S.; Lee, W.K.; Chon, J.; et al. Forest management can mitigate negative impacts of climate and land-use change on plant biodiversity: Insights from the Republic of Korea. J. Environ. Manag. 2021, 288, 112400. [Google Scholar] [CrossRef]
- Decuyper, M.; Chávez, R.O.; Lohbeck, M.; Lastra, J.A.; Tsendbazar, N.; Hackländer, J.; Herold, M.; Vågen, T.-G. Continuous monitoring of forest change dynamics with satellite time series. Remote Sens. Environ. 2022, 269, 112829. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Huang, C.; He, T.; Tao, X.; Wei, A. Local land surface temperature change induced by afforestation based on satellite observations in Guangdong plantation forests in China. Agric. For. Meteorol. 2019, 276–277, 107641. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Munoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martinez, P. Land Surface Emissivity Retrieval From Different VNIR and TIR Sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, W.; Yu, W.; Wu, T. Combined effects of urban forests on land surface temperature and PM2.5 pollution in the winter and summer. Sustain. Cities Soc. 2024, 104, 105309. [Google Scholar] [CrossRef]
- Shen, W.; Liu, Q.; Ji, M.; He, J.; He, T.; Huang, C. Impacts of urban forests and landscape characteristics on land surface temperature in two urban agglomeration areas of China. Sustain. Cities Soc. 2023, 99, 104909. [Google Scholar] [CrossRef]
- Blanton, A.; Mohan, M.; Galgamuwa, G.A.P.; Watt, M.S.; Montenegro, J.F.; Mills, F.; Carlsen, S.C.H.; Valasquez-Camacho, L.; Bomfim, B.; Pons, J.; et al. The status of forest carbon markets in Latin America. J. Environ. Manag. 2024, 352, 119921. [Google Scholar] [CrossRef]
- Prevedello, J.A.; Winck, G.R.; Weber, M.M.; Nichols, E.; Sinervo, B. Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 2019, 14, e0213368. [Google Scholar] [CrossRef]
- Cai, H.; Yang, X.; Wang, K.; Xiao, L. Is Forest Restoration in the Southwest China Karst Promoted Mainly by Climate Change or Human-Induced Factors? Remote Sens. 2014, 6, 9895–9910. [Google Scholar] [CrossRef]
- Windisch, M.G.; Davin, E.L.; Seneviratne, S.I. Prioritizing forestation based on biogeochemical and local biogeophysical impacts. Nat. Clim. Chang. 2021, 11, 867–871. [Google Scholar] [CrossRef]
- Brown, S.; Lugo, A.E.; Chapman, J. Biomass of tropical tree plantations and its implications for the global carbon budget. Can. J. For. Res. 1986, 16, 390–394. [Google Scholar] [CrossRef]
- Pavani, B.F.; Sousa Junior, W.C.; Inouye, C.E.N.; Vieira, S.A.; Mello, A.Y.I. Estimating and valuing the carbon release in scenarios of land-use and climate changes in a Brazilian coastal area. J. Environ. Manag. 2018, 226, 416–427. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Liang, H.; Zhang, H.; Yin, L.; Feng, X. Quantifying the policy-driven large scale vegetation restoration effects on evapotranspiration over drylands in China. J. Environ. Manag. 2023, 345, 118723. [Google Scholar] [CrossRef] [PubMed]
- Liao, W.; Liu, X.; Burakowski, E.; Wang, D.; Wang, L.; Li, D. Sensitivities and Responses of Land Surface Temperature to Deforestation-Induced Biophysical Changes in Two Global Earth System Models. J. Clim. 2020, 33, 8381–8399. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.; Loveland, T.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhao, M.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Li, S. Local cooling and warming effects of forests based on satellite observations. Nat. Commun. 2015, 6, 6603. [Google Scholar] [CrossRef]
- Frate, L.; Saura, S.; Minotti, M.; Di Martino, P.; Giancola, C.; Carranza, M.L. Quantifying Forest Spatial Pattern Trends at Multiple Extents: An Approach to Detect Significant Changes at Different Scales. Remote Sens. 2014, 6, 9298–9315. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Huang, C.; Tao, X.; Li, S.; Wei, A. Mapping Annual Forest Change Due to Afforestation in Guangdong Province of China Using Active and Passive Remote Sensing Data. Remote Sens. 2019, 11, 490. [Google Scholar] [CrossRef]
- Lee, X.; Goulden, M.L.; Hollinger, D.Y.; Barr, A.; Black, T.A.; Bohrer, G.; Bracho, R.; Drake, B.; Goldstein, A.; Gu, L.; et al. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 2011, 479, 384–387. [Google Scholar] [CrossRef]
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Estel, S.; Pongratz, J.; Ceschia, E.; Churkina, G.; Don, A.; Erb, K.; Ferlicoq, M.; et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, M.; Mildrexler, D.J.; Motesharrei, S.; Mu, Q.; Kalnay, E.; Zhao, F.; Li, S.; Wang, K. Potential and Actual impacts of deforestation and afforestation on land surface temperature. J. Geophys. Res. Atmos. 2016, 121, 14372–14386. [Google Scholar] [CrossRef]
- Perugini, L.; Caporaso, L.; Marconi, S.; Cescatti, A.; Quesada, B.; de Noblet-Ducoudré, N.; House, J.I.; Arneth, A. Biophysical effects on temperature and precipitation due to land cover change. Environ. Res. Lett. 2017, 12, 053002. [Google Scholar] [CrossRef]
- Zhang, C.; Ge, Q.; Dong, J.; Zhang, X.; Li, Y.; Han, S. Characterizing spatial, diurnal, and seasonal patterns of agricultural irrigation expansion-induced cooling in Northwest China from 2000 to 2020. Agric. For. Meteorol. 2023, 330, 109304. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z.; Singh, V.P.; Liu, C. Impacts of Spatial Configuration of Land Surface Features on Land Surface Temperature across Urban Agglomerations, China. Remote Sens. 2021, 13, 4008. [Google Scholar] [CrossRef]
- Parsons, L.A.; Jung, J.; Masuda, Y.J.; Vargas Zeppetello, L.R.; Wolff, N.H.; Kroeger, T.; Battisti, D.S.; Spector, J.T. Tropical deforestation accelerates local warming and loss of safe outdoor working hours. One Earth 2021, 4, 1730–1740. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, S.; Tang, J.; Liu, T.; Bu, K.; Yan, F.; Yang, C.; Yang, J.J.T.; Climatology, A. The effect of deforestation on the regional temperature in Northeastern China. Theor. Appl. Climatol. 2015, 120, 761–771. [Google Scholar] [CrossRef]
- He, T.; Shao, Q.; Cao, W.; Huang, L.; Liu, L. Satellite-Observed Energy Budget Change of Deforestation in Northeastern China and its Climate Implications. Remote Sens. 2015, 7, 11586–11601. [Google Scholar] [CrossRef]
- Qian, Z.; Sun, Y.; Chen, Z.; Ji, F.; Feng, G.; Ma, Q. Analysis of Land Surface Temperature Sensitivity to Vegetation in China. Remote Sens. 2023, 15, 4544. [Google Scholar] [CrossRef]
- Zhao, K.; Jackson, R. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr. 2014, 329–353. [Google Scholar] [CrossRef]
- Li, D.; Yan, S.; Chen, G. Effects of Urban Redevelopment on Surface Urban Heat Island. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 2366–2373. [Google Scholar] [CrossRef]
- Li, G.; Zhang, X.; Mirzaei, P.A.; Zhang, J.; Zhao, Z. Urban heat island effect of a typical valley city in China: Responds to the global warming and rapid urbanization. Sustain. Cities Soc. 2018, 38, 736–745. [Google Scholar] [CrossRef]
- Mumtaz, F.; Li, J.; Liu, Q.; Tariq, A.; Arshad, A.; Dong, Y.; Zhao, J.; Bashir, B.; Zhang, H.; Gu, C.; et al. Impacts of Green Fraction Changes on Surface Temperature and Carbon Emissions: Comparison under Forestation and Urbanization Reshaping Scenarios. Remote Sens. 2023, 15, 859. [Google Scholar] [CrossRef]
- Jiao, M.; Wang, Y.; Hu, M.; Xia, B. Spatial deconstruction and differentiation analysis of early warning for ecological security in the Pearl River Delta, China. Sustain. Cities Soc. 2021, 64, 102557. [Google Scholar] [CrossRef]
- Zhang, K.; Jin, Y.; Li, D.; Wang, S.; Liu, W. Spatiotemporal variation and evolutionary analysis of the coupling coordination between urban social-economic development and ecological environments in the Yangtze River Delta cities. Sustain. Cities Soc. 2024, 111, 105561. [Google Scholar] [CrossRef]
- Wei, P.; Chen, S.; Wu, M.; Jia, Y.; Xu, H.; Liu, D. Increased Ecosystem Carbon Storage between 2001 and 2019 in the Northeastern Margin of the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3986. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Shen, W.; Li, M.; Huang, C.J. Review of remote sensing algorithms for monitoring forest disturbance from time series and multi-source data fusion. J. Remote Sens. 2018, 22, 1005–1022. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Wang, J.; He, Z.; Wang, C.; Feng, M.; Pang, Y.; Yu, T.; Li, X. Forest Change Dataset during the 1986–2018 in the Natural Forest Conversion Program, Northeast China; A Big Earth Data Platform for Three Poles: Beijing, China, 2022. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Sun, M.; Qiu, J.; Wang, N.; Ye, J.; Li, M. Predicting Land Surface Temperature and Land Cover Changes Based on Multisource Remote Sensing Spatio-Temporal Fusion in Hefei, Eastern China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8764–8781. [Google Scholar] [CrossRef]
- Qin, Z.H.; Li, W.; Xu, B.; Chen, Z.; Liu, J. The estimation of land surface emissivity for Landsat TM6. Remote Sens. Land Resour. 2004, 16, 28–32,36,41. [Google Scholar] [CrossRef]
- Betts, R.A. Afforestation cools more or less. Nat. Geosci. 2011, 4, 504–505. [Google Scholar] [CrossRef]
- West, P.; Narisma, G.; Barford, C.; Kucharik, C.; Foley, J. An alternative approach for quantifying climate regulation by ecosystems. Front. Ecol. Environ. 2011, 9, 126–133. [Google Scholar] [CrossRef]
- Yuan, J.; Xu, Y.; Xiang, J.; Wu, L.; Wang, D. Spatiotemporal variation of vegetation coverage and its associated influence factor analysis in the Yangtze River Delta, eastern China. Environ. Sci. Pollut. Res. 2019, 26, 32866–32879. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, C.; Ciais, P.; Zeng, Z.; Cescatti, A.; Shang, J.; Chen, J.M.; Liu, J.; Wang, Y.-P.; Yuan, W.; et al. Asymmetric influence of forest cover gain and loss on land surface temperature. Nat. Clim. Chang. 2023, 13, 823–831. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Snyder, P.K.; Twine, T.E.; Cuadra, S.V.; Costa, M.H.; DeLucia, E.H. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Clim. Chang. 2012, 2, 177–181. [Google Scholar] [CrossRef]
- Mutiibwa, D.; Strachan, S.; Albright, T. Land Surface Temperature and Surface Air Temperature in Complex Terrain. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4762–4774. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef]
- Cheng, J.; Meng, X.; Dong, S.; Liang, S. Generating the 30-m land surface temperature product over continental China and USA from landsat 5/7/8 data. Sci. Remote Sens. 2021, 4, 100032. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tai, Z.; Su, X.; Shen, W.; Wang, T.; Gu, C.; He, J.; Huang, C. Identification of Spatial Distribution of Afforestation, Reforestation, and Deforestation and Their Impacts on Local Land Surface Temperature in Yangtze River Delta and Pearl River Delta Urban Agglomerations of China. Remote Sens. 2024, 16, 3528. https://doi.org/10.3390/rs16183528
Tai Z, Su X, Shen W, Wang T, Gu C, He J, Huang C. Identification of Spatial Distribution of Afforestation, Reforestation, and Deforestation and Their Impacts on Local Land Surface Temperature in Yangtze River Delta and Pearl River Delta Urban Agglomerations of China. Remote Sensing. 2024; 16(18):3528. https://doi.org/10.3390/rs16183528
Chicago/Turabian StyleTai, Zhiguo, Xiaokun Su, Wenjuan Shen, Tongyu Wang, Chenfeng Gu, Jiaying He, and Chengquan Huang. 2024. "Identification of Spatial Distribution of Afforestation, Reforestation, and Deforestation and Their Impacts on Local Land Surface Temperature in Yangtze River Delta and Pearl River Delta Urban Agglomerations of China" Remote Sensing 16, no. 18: 3528. https://doi.org/10.3390/rs16183528
APA StyleTai, Z., Su, X., Shen, W., Wang, T., Gu, C., He, J., & Huang, C. (2024). Identification of Spatial Distribution of Afforestation, Reforestation, and Deforestation and Their Impacts on Local Land Surface Temperature in Yangtze River Delta and Pearl River Delta Urban Agglomerations of China. Remote Sensing, 16(18), 3528. https://doi.org/10.3390/rs16183528