Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. geeSEBAL
2.3. Land Use and Land Cover Classification
2.4. Pivot-Irrigated Mapping
2.5. Data Processing
2.6. Gap Filling
3. Results
3.1. Seasonal Patterns of Evapotranspiration
3.2. Changes in Spatial Patterns and ET
3.3. Difference in Daily Interpolated ET between Irrigated and Rainfed Croplands
4. Discussion
4.1. Impact of Agriculture Expansion on ET in the São Marcos River Basin
4.2. Validations and Uncertainties
4.3. Advancements and Suggestions for Further Work
5. Conclusions
- (i)
- The conversion from natural savanna vegetation to rainfed and irrigated agriculture has significantly altered ET dynamics, leading to notable shifts in water consumption sources. Our findings reveal that the savannas exhibit higher ET rates compared to agricultural fields, particularly rainfed areas. Additionally, the replacement of natural vegetation to agriculture fields has led to a long-term average decrease in ET, although aggregate trends across the basin remain relatively stable due to compensatory increases in other land covers.
- (ii)
- Our results also indicate that despite the increase in irrigated cropland, water use has not significantly changed in the basin, with rainfed croplands still accounting for the majority of water consumption. However, the growing dependence on irrigation raises concerns about sustainable water resource management, especially given the potential for water scarcity and conflicts over water use [2,3].
- (iii)
- The gap-filling approach revealed an average difference of 0.6 mm day−1 between irrigated and non-irrigated cropland areas, indicating that the method effectively captured daily ET variability and was useful for distinguishing between the two types of areas. This difference was particularly noticeable during the dry season, when irrigation pivots are used to compensate for the lack of precipitation in the study region.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of Food and Agriculture 2016: Climate Change, Agriculture and Food Security; Food and Agriculture Organization of the United Nations: Rome, Italy, 2016; ISBN 9789251093740.
- Multsch, S.; Krol, M.S.; Pahlow, M.; Assunção, A.L.C.; Barretto, A.G.O.P.; de Jong van Lier, Q.; Breuer, L. Assessment of Potential Implications of Agricultural Irrigation Policy on Surface Water Scarcity in Brazil. Hydrol. Earth Syst. Sci. 2020, 24, 307–324. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global Agricultural Economic Water Scarcity. Sci. Adv. 2024, 6, eaaz6031. [Google Scholar] [CrossRef] [PubMed]
- Sayer, J.; Cassman, K.G. Agricultural Innovation to Protect the Environment. Proc. Natl. Acad. Sci. USA 2013, 110, 8345–8348. [Google Scholar] [CrossRef] [PubMed]
- de Souza, E.R.; Montenegro, A.A.d.A.; Montenegro, S.M.G.; de Matos, J. de A. Temporal Stability of Soil Moisture in Irrigated Carrot Crops in Northeast Brazil. Agric. Water Manag. 2011, 99, 26–32. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural Expansion and Its Impacts on Tropical Nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Mokhtari, A.; Noory, H.; Pourshakouri, F.; Haghighatmehr, P.; Afrasiabian, Y.; Razavi, M.; Fereydooni, F.; Sadeghi Naeni, A. Calculating Potential Evapotranspiration and Single Crop Coefficient Based on Energy Balance Equation Using Landsat 8 and Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2019, 154, 231–245. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat Thermal Imagery in Monitoring Evapotranspiration and Managing Water Resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
- Gonçalves, I.Z.; Ruhoff, A.; Laipelt, L.; Bispo, R.C.; Hernandez, F.B.T.; Neale, C.M.U.; Teixeira, A.H.C.; Marin, F.R. Remote Sensing-Based Evapotranspiration Modeling Using GeeSEBAL for Sugarcane Irrigation Management in Brazil. Agric. Water Manag. 2022, 274, 107965. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S.; Jiang, L. Remote Sensing Temporal and Spatial Patterns of Evapotranspiration and the Responses to Water Management in a Large Irrigation District of North China. Agric. For. Meteorol. 2012, 164, 112–122. [Google Scholar] [CrossRef]
- Sando, R.; Caldwell, R.R.; Blasch, K. Using Remote Sensing to Characterize and Compare Evapotranspiration from Different Irrigation Regimes in the Smith River Watershed of Central Montana. Irrig. Drain. Syst. Eng. 2017, 6, 1–10. [Google Scholar] [CrossRef]
- Al Zayed, I.S.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Satellite-Based Evapotranspiration over Gezira Irrigation Scheme, Sudan: A Comparative Study. Agric. Water Manag. 2016, 177, 66–76. [Google Scholar] [CrossRef]
- Ershadi, A.; McCabe, M.F.; Evans, J.P.; Walker, J.P. Effects of Spatial Aggregation on the Multi-Scale Estimation of Evapotranspiration. Remote Sens. Environ. 2013, 131, 51–62. [Google Scholar] [CrossRef]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping Daily and Seasonal Evapotranspiration from Irrigated Crops Using Global Climate Grids and Satellite Imagery: Automation and Methods Comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
- Ding, R.; Kang, S.; Zhang, Y.; Hao, X.; Tong, L.; Du, T. Partitioning Evapotranspiration into Soil Evaporation and Transpiration Using a Modified Dual Crop Coefficient Model in Irrigated Maize Field with Ground-Mulching. Agric. Water Manag. 2013, 127, 85–96. [Google Scholar] [CrossRef]
- Biggs, T.; Petropoulos, G.P.; Velpuri, N.M.; Marshall, M.; Glenn, E.P.; Nagler, P.L.; Messina, A. Remote Sensing of Actual Evapotranspiration from Cropland: Chapter 3. In Remote Sensing Handbook, Vol. III: Remote Sensing of Water Resources, Disasters, and Urban Studies; Thenkabail, P.S., Ed.; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Laipelt, L.; Ruhoff, L.A.; Fleischmann, S.A.; Kayser, H.R.; Kich, D.E.; da Rocha, R.H.; Neale, M.C. Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil. Remote Sens. 2020, 12, 1108. [Google Scholar] [CrossRef]
- Teixeira, A.H.d.C.; Bastiaanssen, W.G.M.; Ahmad, M.D.; Bos, M.G. Reviewing SEBAL Input Parameters for Assessing Evapotranspiration and Water Productivity for the Low-Middle São Francisco River Basin, Brazil. Agric. For. Meteorol. 2009, 149, 462–476. [Google Scholar] [CrossRef]
- Laipelt, L.; Henrique Bloedow Kayser, R.; Santos Fleischmann, A.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-Term Monitoring of Evapotranspiration Using the SEBAL Algorithm and Google Earth Engine Cloud Computing. ISPRS J. Photogramm. Remote Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Kayser, R.; Ruhoff, A.; Laipelt, L.; Kich, E.; Roberti, D.; Souza, V.; Ruberti, G.; Collischonn, W.; Neale, C. Assessing SEBAL Automated Calibration and Meteorological Reanalysis Uncertainties to Estimate Evapotranspiration in Subtropical Humid Climates. Under Review. Agric. For. Meteorol. 2021, 314, 108775. [Google Scholar] [CrossRef]
- Numata, I.; Khand, K.; Kjaersgaard, J.; Cochrane, M.A.; Silva, S.S. Evaluation of Landsat-Based METRIC Modeling to Provide High-Spatial Resolution Evapotranspiration Estimates for Amazonian Forests. Remote Sens. 2017, 9, 46. [Google Scholar] [CrossRef]
- Khand, K.; Numata, I.; Kjaersgaard, J.; Vourlitis, G. Dry Season Evapotranspiration Dynamics over Human-Impacted Landscapes in the Southern Amazon Using the Landsat-Based METRIC Model. Remote Sens. 2017, 9, 706. [Google Scholar] [CrossRef]
- Singh, R.K.; Khand, K.; Kagone, S.; Schauer, M.; Senay, G.B.; Wu, Z. A Novel Approach for next Generation Water-Use Mapping Using Landsat and Sentinel-2 Satellite Data. Hydrol. Sci. J. 2020, 65, 2508–2519. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Alfieri, J.G.; Gao, F.; Hain, C.; Prueger, J.H.; Evett, S.; Colaizzi, P.; Howell, T.; Chávez, J.L. Mapping Daily Evapotranspiration at Landsat Spatial Scales during the BEAREX’08 Field Campaign. Adv. Water Resour. 2012, 50, 162–177. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.D.M.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL): 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; van der Wal, T. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL): 2. Validation. J. Hydrol. 1998, 212–213, 213–229. [Google Scholar] [CrossRef]
- Schirmbeck, J.; Fontana, D.C.; Roberti, D.R. Evaluation of OSEB and SEBAL Models for Energy Balance of a Crop Area in a Humid Subtropical Climate. Bragantia 2018, 77, 609–621. [Google Scholar] [CrossRef]
- Bastiaanssen WG, M.; Noordman EJ, M.; Pelgrum, H.; Davids, G.; Thoreson, B.P.; Allen, R.G. SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions. J. Irrig. Drain. Eng. 2005, 131, 85–93. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration. In Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300. [Google Scholar]
- MapBiomas Project MapBiomas—Collection 3.1 of Brazilian Land Cover & Use Map Series. Available online: http://mapbiomas.org/ (accessed on 28 February 2019).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-Use Change Affects Water Recycling in Brazil’s Last Agricultural Frontier. Glob. Chang. Biol. 2016, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed]
- da Silva, B.B.; Wilcox, B.P.; da Silva, V.d.P.R.; Montenegro, S.M.G.L.; de Oliveira, L.M.M. Changes to the Energy Budget and Evapotranspiration Following Conversion of Tropical Savannas to Agricultural Lands in São Paulo State, Brazil. Ecohydrology 2015, 8, 1272–1283. [Google Scholar] [CrossRef]
- Grecchi, R.C.; Gwyn, Q.H.J.; Bénié, G.B.; Formaggio, A.R.; Fahl, F.C. Land Use and Land Cover Changes in the Brazilian Cerrado: A Multidisciplinary Approach to Assess the Impacts of Agricultural Expansion. Appl. Geogr. 2014, 55, 300–312. [Google Scholar] [CrossRef]
- Brown, J.C.; Koeppe, M.; Coles, B.; Price, K. Soybean Production and Conversion of Tropical Forest in the Brazilian Amazon: The Case of Vilhena, Rondônia. Ambio 2005, 34, 462–469. [Google Scholar] [CrossRef]
- Zhao, M.; A, G.; Liu, Y.; Konings, A.G. Evapotranspiration Frequently Increases during Droughts. Nat. Clim. Chang. 2022, 12, 1024–1030. [Google Scholar] [CrossRef]
- Liu, J.; You, Y.; Li, J.; Sitch, S.; Gu, X.; Nabel, J.E.M.S.; Lombardozzi, D.; Luo, M.; Feng, X.; Arneth, A.; et al. Response of Global Land Evapotranspiration to Climate Change, Elevated CO2, and Land Use Change. Agric. For. Meteorol. 2021, 311, 108663. [Google Scholar] [CrossRef]
- Li, G.; Zhang, F.; Jing, Y.; Liu, Y.; Sun, G. Response of Evapotranspiration to Changes in Land Use and Land Cover and Climate in China during 2001–2013. Sci. Total Environ. 2017, 596–597, 256–265. [Google Scholar] [CrossRef]
- Lima, L.S.; Coe, M.T.; Soares Filho, B.S.; Cuadra, S.V.; Dias, L.C.P.; Costa, M.H.; Lima, L.S.; Rodrigues, H.O. Feedbacks between Deforestation, Climate, and Hydrology in the Southwestern Amazon: Implications for the Provision of Ecosystem Services. Landsc. Ecol. 2014, 29, 261–274. [Google Scholar] [CrossRef]
- Costa, M.H.; Pires, G.F. Effects of Amazon and Central Brazil Deforestation Scenarios on the Duration of the Dry Season in the Arc of Deforestation. Int. J. Climatol. 2009, 30, 1970–1979. [Google Scholar] [CrossRef]
- Lawrence, D.; Vandecar, K. Effects of Tropical Deforestation on Climate and Agriculture. Nat. Clim. Chang. 2015, 5, 27–36. [Google Scholar] [CrossRef]
- Loarie, S.R.; Lobell, D.B.; Asner, G.P.; Field, C.B. Land-Cover and Surface Water Change Drive Large Albedo Increases in South America. Earth Interact. 2011, 15, 1–16. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Nearing, M.A.; Moran, M.S.; Goodrich, D.C.; Wendland, E.; Gupta, H. V Trends in Water Balance Components across the Brazilian Cerrado. Water Resour. Res. 2014, 50, 7100–7114. [Google Scholar] [CrossRef]
- Siqueira, P.P.; Oliveira, P.T.S.; Bressiani, D.; Meira Neto, A.A.; Rodrigues, D.B.B. Effects of Climate and Land Cover Changes on Water Availability in a Brazilian Cerrado Basin. J. Hydrol. Reg. Stud. 2021, 37, 100931. [Google Scholar] [CrossRef]
- Christoffersen, B.O.; Restrepo-Coupe, N.; Arain, M.A.; Baker, I.T.; Cestaro, B.P.; Ciais, P.; Fisher, J.B.; Galbraith, D.; Guan, X.; Gulden, L.; et al. Mechanisms of Water Supply and Vegetation Demand Govern the Seasonality and Magnitude of Evapotranspiration in Amazonia and Cerrado. Agric. For. Meteorol. 2014, 191, 33–50. [Google Scholar] [CrossRef]
- Bof, P.H.; Marques, G.F.; Tilmant, A.; Dalcin, A.P.; Olivares, M. Water–Food–Energy Nexus Tradeoffs in the São Marcos River Basin. Water 2021, 13, 817. [Google Scholar] [CrossRef]
- de Vasconcelos, R.F.R.; da Silva Júnior, L.H. The Water Conflict in Alto São Marcos: Characteristics, Dilemmas, and Challenges. Desenvolv. Meio Ambiente 2023, 61, 368–390. [Google Scholar] [CrossRef]
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B.; et al. OpenET: Filling a Critical Data Gap in Water Management for the Western United States. JAWRA J. Am. Water Resour. Assoc. 2022, 58, 971–994. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Ahmad, F.A. Time Series Trends of Landsat-Based ET Using Automated Calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. 2019, 238, 111034. [Google Scholar] [CrossRef]
- Grosso, C.; Manoli, G.; Martello, M.; Chemin, Y.; Pons, D.H.; Teatini, P.; Piccoli, I.; Morari, F. Mapping Maize Evapotranspiration at Field Scale Using SEBAL: A Comparison with the FAO Method and Soil-Plant Model Simulations. Remote Sens. 2018, 10, 1452. [Google Scholar] [CrossRef]
- Comini de Andrade, B.; Laipelt, L.; Fleischmann, A.; Huntington, J.; Morton, C.; Melton, F.; Erickson, T.; Roberti, D.R.; de Arruda Souza, V.; Biudes, M.; et al. GeeSEBAL-MODIS: Continental-Scale Evapotranspiration Based on the Surface Energy Balance for South America. ISPRS J. Photogramm. Remote Sens. 2024, 207, 141–163. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A Review of Current Methodologies for Regional Evapotranspiration Estimation from Remotely Sensed Data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P.; Li, Z.-L. How Sensitive Is SEBAL to Changes in Input Variables, Domain Size and Satellite Sensor? J. Geophys. Res. Atmos. 2011, 116, D21107. [Google Scholar] [CrossRef]
- Choragudi, V.N.R.K. Sensitivity Analysis on Mapping Evapotranspiration at High Resolution Using Internal Calibration (METRIC). Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2011. [Google Scholar]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated Calibration of the METRIC-Landsat Evapotranspiration Process. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Ke, Y.; Im, J.; Park, S.; Gong, H. Downscaling of MODIS One Kilometer Evapotranspiration Using Landsat-8 Data and Machine Learning Approaches. Remote Sens. 2016, 8, 215. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Onojeghuo, A.O.; Zhu, X.; Atkinson, P.M. Enhancing Spatio-Temporal Fusion of MODIS and Landsat Data by Incorporating 250 m MODIS Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4116–4123. [Google Scholar] [CrossRef]
- Gevaert, C.M.; García-Haro, F.J. A Comparison of STARFM and an Unmixing-Based Algorithm for Landsat and MODIS Data Fusion. Remote Sens. Environ. 2015, 156, 34–44. [Google Scholar] [CrossRef]
- de Souza, F.B.; Laipelt, L.; de Andrade, B.C.; de Arruda Souza, V.; Roberti, D.R.; Ruhoff, A. A MODIS–Landsat Cloud-Based Spatiotemporal Downscaling Algorithm to Estimate Land Surface Temperature. Int. J. Remote Sens. 2023, 44, 4775–4795. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laipelt, L.; Rossi, J.B.; de Andrade, B.C.; Scherer-Warren, M.; Ruhoff, A. Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates. Remote Sens. 2024, 16, 3404. https://doi.org/10.3390/rs16183404
Laipelt L, Rossi JB, de Andrade BC, Scherer-Warren M, Ruhoff A. Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates. Remote Sensing. 2024; 16(18):3404. https://doi.org/10.3390/rs16183404
Chicago/Turabian StyleLaipelt, Leonardo, Julia Brusso Rossi, Bruno Comini de Andrade, Morris Scherer-Warren, and Anderson Ruhoff. 2024. "Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates" Remote Sensing 16, no. 18: 3404. https://doi.org/10.3390/rs16183404
APA StyleLaipelt, L., Rossi, J. B., de Andrade, B. C., Scherer-Warren, M., & Ruhoff, A. (2024). Assessing Evapotranspiration Changes in Response to Cropland Expansion in Tropical Climates. Remote Sensing, 16(18), 3404. https://doi.org/10.3390/rs16183404