Use of SLSTR Sea Surface Temperature Data in OSTIA as a Reference Sensor: Implementation and Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sentinel-3 SLSTR SST Data
2.2. Skin-to-Depth Adjustment
2.3. Assessment Method
2.4. OSTIA Configurations
3. Results
3.1. SLSTR Bias Correction in Control OSTIA
3.2. Skin-to-Depth Conversion for SLSTR SSTs
- An hourly diurnal dataset was assembled to cover the period of the SLSTR data file plus an overlap of +1 h or −1 h from the satellite data time period;
- For each point of the SLSTR observations, the cool skin value was interpolated to the location and time of the observation, using the SciPy tri-linear interpolation module [23];
- However, this module is unable to return valid interpolation values (which are within the −1.0–0.0 K range) if filled values are present in the calculation, e.g., close to the coasts. For these observation points, the SciPy nearest neighbour method was used;
- In the rare cases (approximately 35 out of 2.7 million points) in which the linear interpolation and nearest neighbour methods both failed to return a sensible value (typically at points near a small island), 0.0 was used for the cool skin value. This only occurs when a single island pixel is surrounded by ocean pixels;
- These interpolated diurnal cool skin values were then applied to the observation dataset to produce the corrected SSTs.
3.3. The Impact of Assimilating SLSTR in OSTIA and Using It as a Reference Sensor
3.3.1. Replacing VIIRS with SLSTR in the OSTIA Reference Dataset
3.3.2. Combining VIIRS and SLSTR in the OSTIA Reference Dataset
- Produce reference and satellite (to be bias-corrected) matchups individually for each part of the reference dataset, i.e., so that there are sets of matchups for each of the in situ VIIRS and SLSTR reference components;
- Adjust the QC values in the matchup files, so that the matchup values against the VIIRS between 25°S and 25°N and the matchup values against the SLSTR south of 50°S and north of 50°N were rejected; no adjustment was made for the matchup values against the in-situ observations;
- The three matchup files were merged into one to be input into the next bias analysis.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Good, S.; Fiedler, E.; Mao, C.; Martin, M.J.; Maycock, A.; Reid, R.; Roberts-Jones, J.; Searle, T.; Waters, J.; While, J.; et al. The current configuration of the OSTIA system for operational production of foundation sea surface temperature and ice concentration analyses. Remote Sens. 2020, 12, 720. [Google Scholar] [CrossRef]
- Fiedler, E.K.; Mao, C.; Good, S.A.; Waters, J.; Martin, M.J. Improvements to feature resolution in the OSTIA sea surface temperature analysis using the NEMOVAR assimilation scheme. Q. J. R. Meteorol. Soc. 2019, 145, 3609–3625. [Google Scholar] [CrossRef]
- While, J.; Mao, C.; Martin, M.J.; Roberts-Jones, J.; Sykes, P.A.; Good, S.A.; McLaren, A.J. An operational analysis system for the global diurnal cycle of sea surface temperature: Implementation and validation. Q. J. R. Meteorol. Soc. 2017, 143, 1787–1803. [Google Scholar] [CrossRef]
- Donlon, C.J.; Martin, M.; Stark, J.; Roberts-Jones, J.; Fiedler, E.; Wimmer, W. The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) system. Remote Sens. Environ. 2012, 116, 140–158. [Google Scholar] [CrossRef]
- Stark, J.D.; Donlon, C.; O’carroll, A.; Corlett, G. Determination of AATSR biases using the OSTIA SST analysis system and a matchup database. J. Atmos. Ocean. Technol. 2008, 25, 1208–1217. [Google Scholar] [CrossRef]
- Nardelli, B.B.; Pisano, A.; Tronconi, C. Mediterranean Sea and Black Sea Surface Temperature NRT Data; Copernicus Marine Environment Monitoring Service: Luxembourg, 2019. [Google Scholar]
- Donlon, C.; Berruti, B.; Buongiorno, A.; Ferreira, M.-H.; Féménias, P.; Frerick, J.; Goryl, P.; Klein, U.; Laur, H.; Mavrocordatos, C.; et al. The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission. Remote Sens. Environ. 2012, 120, 37–57. [Google Scholar] [CrossRef]
- Bonekamp, H.; Montagner, F.; Santacesaria, V.; Loddo, C.N.; Wannop, S.; Tomazic, I.; O’Carroll, A.; Kwiatkowska, E.; Scharroo, R.; Wilson, H. Core operational Sentinel-3 marine data product services as part of the Copernicus Space Component. Ocean Sci. 2016, 12, 787–795. [Google Scholar] [CrossRef]
- Merchant, C.J. (SLSTR) Algorithm Theoretical Basis Document. SLSTR-ATBD-L2SST-v2.5, October 2012; pp. 1–54. Available online: https://sentiwiki.copernicus.eu/__attachments/1672112/SLSTR-ATBD-L2SST%20-%20Sentinel%203%20SLSTR%20Level%202%20Sea%20Surface%20Temperature%20ATBD%202012%20-%202.5.pdf?inst-v=c33646ba-3abf-49fb-a1eb-ee14eb9351c0 (accessed on 9 September 2024).
- GHRSST Science Team. The Recommended GHRSST Data Specification (GDS) 2.1, Version 0. 2022. Available online: https://zenodo.org/records/6984989 (accessed on 9 September 2024).
- Zhang, H.; Beggs, H.; Ignatov, A.; Babanin, A.V. Nighttime cool skin effect observed from infrared SST autonomous radiometer (ISAR) and depth temperatures. J. Atmos. Ocean. Technol. 2020, 37, 33–46. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Artale, V.; Iudicone, D.; Santoleri, R.; Rupolo, V.; Marullo, S.; D’Ortenzio, F. Role of surface fluxes in ocean general circulation models using satellite sea surface temperature: Validation of and sensitivity to the forcing frequency of the Mediterranean thermohaline circulation. J. Geophys. Res. Oceans 2002, 107, 29-1–29-24. [Google Scholar] [CrossRef]
- Atkinson, C.; Rayner, N.; Kennedy, J.; Good, S. An integrated database of ocean temperature and salinity observations. J. Geophys. Res. Ocean. Obs. 2014, 119, 7139–7163. [Google Scholar] [CrossRef]
- Atkinson, C.; Corlett, G.; Merchant, C. Project: SST-CCI-Phase-II Title: SIRDS Reference Data. 2017. Available online: https://climate.esa.int/media/documents/SST_CCI-SIRDS-UoL-001-Issue1-signed.pdf (accessed on 9 September 2024).
- Fiedler, E.K.; McLaren, A.; Banzon, V.; Brasnett, B.; Ishizaki, S.; Kennedy, J.; Rayner, N.; Roberts-Jones, J.; Corlett, G.; Merchant, C.J.; et al. Intercomparison of long-term sea surface temperature analyses using the GHRSST Multi-Product Ensemble (GMPE) system. Remote Sens. Environ. 2019, 222, 18–33. [Google Scholar] [CrossRef]
- Fiedler, E.K.; Mao, C.; McLaren, A. SST: Results and Recommendations. Euro-Argo Improvements for the GMES Marine Service (E-AIMS); Report number: D4.3.3; European Commission: Luxembourg, 2015. [Google Scholar]
- Tsamalis, C.; Chédin, A.; Pelon, J.; Capelle, V. The seasonal vertical distribution of the Saharan Air Layer and its modulation by the wind. Atmos. Meas. Tech. 2013, 13, 11235–11257. [Google Scholar] [CrossRef]
- Capelle, V.; Chédin, A.; Siméon, M.; Tsamalis, C.; Pierangelo, C.; Pondrom, M.; Crevoisier, C.; Crepeau, L.; Scott, N.A. Evaluation of IASI-derived dust aerosol characteristics over the tropical belt. Atmos. Meas. Tech. 2014, 14, 9343–9362. [Google Scholar] [CrossRef]
- Foltz, G.R.; McPhaden, M.J. Impact of Saharan Dust on Tropical North Atlantic SST*. J. Clim. 2008, 21, 5048–5060. [Google Scholar] [CrossRef]
- Tsamalis, C.; Saunders, R. Quality Assessment of Sea Surface Temperature from ATSRs of the Climate Change Initiative (Phase 1). Remote Sens. 2018, 10, 497. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Roberts-Jones, J.; Fiedler, E.; Bulgin, C.E.; Corlett, G.K.; Good, S.; McLaren, A.; Rayner, N.; Morak-Bozzo, S.; et al. Sea surface temperature datasets for climate applications from Phase 1 of the European Space Agency Climate Change Initiative (SST CCI). Geosci. Data J. 2014, 1, 179–191. [Google Scholar] [CrossRef]
- SciPy. scipy.interpolate.RegularGridInterpolator. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.RegularGridInterpolator.html (accessed on 9 September 2024).
- Peyridieu, S.; Chédin, A.; Capelle, V.; Tsamalis, C.; Pierangelo, C.; Armante, R.; Crevoisier, C.; Crépeau, L.; Siméon, M.; Ducos, F.; et al. Characterisation of dust aerosols in the infrared from IASI and comparison with PARASOL, MODIS, MISR, CALIOP, and AERONET observations. Atmos. Meas. Tech. 2013, 13, 6065–6082. [Google Scholar] [CrossRef]
- Carroll, E.B.; Hewson, T.D. NWP Grid Editing at the Met Office. Weather. Forecast. 2005, 20, 1021–1033. [Google Scholar] [CrossRef]
- Bozzo, A.; Benedetti, A.; Flemming, J.; Kipling, Z.; Rémy, S. An aerosol climatology for global models based on the tropospheric aerosol scheme in the Integrated Forecasting System of ECMWF. Geosci. Model Dev. 2020, 13, 1007–1034. [Google Scholar] [CrossRef]
Instrument | Satellite Mission | Orbit Type | Observing Waveband |
---|---|---|---|
AVHRR | MetOp-B | Polar | Infrared |
VIIRS | S-NPP | Polar | Infrared |
VIIRS | NOAA-20 | Polar | Infrared |
SLSTR | Sentinel-3A | Polar | Infrared |
SLSTR | Sentinel-3B | Polar | Infrared |
AMRS2 RSS | GCOM-W | Polar | Microwave |
SEVIRI | MeteoSat-11 | Geostationary | Infrared |
OSTIA Configuration | Short Name | Satellite Reference Sensor(s) | Skin-to-Depth Conversion |
---|---|---|---|
Control OSTIA configuration (representing the operational configuration prior to December 2020) | Control | Night-time S-NPP and NOAA-20 VIIRS | Fixed 0.17 K |
Combination of SLSTR and VIIRS in the reference dataset | S3VIIRSref | Night-time S-NPP and NOAA-20 VIIRS plus Day and night-time dual-view Sentinel-3A and -3B SLSTR | DonlonWS |
S3ntVIIRSref | Night-time QL5 S-NPP and NOAA-20 VIIRS plus Night-time dual-view Sentinel-3A and -3B SLSTR | ||
Combination of SLSTR and VIIRS in the reference dataset, with latitudinal adjustment | S3VIIRSrefQC | Night-time QL5 S-NPP and NOAA-20 VIIRS plus Day and night-time dual-view Sentinel-3A and -3B SLSTR | |
S3ntVIIRSrefQC | Night-time QL5 S-NPP and NOAA-20 VIIRS plus Night-time dual-view Sentinel-3A and -3B SLSTR | ||
SLSTR replaces VIIRS in the reference dataset | S3Ref | Day and night-time dual-view Sentinel-3A and -3B SLSTR | |
S3ntRef | Night-time dual-view Sentinel-3A and -3B SLSTR | ||
S3ntRefCS | Apply cool skin from the diurnal OSTIA system | ||
S3ntRef017 | Fixed 0.17 K |
Region | Mean Difference | Standard Deviation | Num. of Obs. | ||||
---|---|---|---|---|---|---|---|
S3ntRefFix | S3ntRef | S3ntRefCS | S3ntRefFix | S3ntRef | S3ntRefCS | ||
Global Ocean | 0.06 | 0.09 | 0.08 | 0.37 | 0.38 | 0.39 | 33,227 |
North Atlantic | 0.12 | 0.16 | 0.15 | 0.50 | 0.51 | 0.51 | 6853 |
Tropical Atlantic | 0.06 | 0.09 | 0.10 | 0.24 | 0.25 | 0.25 | 2397 |
South Atlantic | 0.00 | 0.01 | 0.01 | 0.42 | 0.42 | 0.43 | 3329 |
North Pacific | 0.08 | 0.12 | 0.11 | 0.35 | 0.35 | 0.37 | 8503 |
Tropical Pacific | 0.08 | 0.11 | 0.14 | 0.20 | 0.20 | 0.20 | 7307 |
South Pacific | 0.03 | 0.04 | 0.04 | 0.25 | 0.25 | 0.28 | 9785 |
Indian Ocean | 0.07 | 0.09 | 0.10 | 0.26 | 0.26 | 0.27 | 4199 |
Southern Ocean | 0.00 | 0.01 | −0.05 | 0.40 | 0.40 | 0.41 | 7030 |
Region | Mean Difference | Standard Deviation | Num. of Obs. | ||||
---|---|---|---|---|---|---|---|
S3ntRefFix | S3ntRef | S3ntRefCS | S3ntRefFix | S3ntRef | S3ntRefCS | ||
Global Ocean | 0.03 | 0.06 | 0.07 | 0.32 | 0.32 | 0.33 | 35,251 |
North Atlantic | −0.03 | 0.00 | 0.03 | 0.40 | 0.40 | 0.41 | 7151 |
Tropical Atlantic | 0.07 | 0.10 | 0.14 | 0.20 | 0.20 | 0.21 | 2665 |
South Atlantic | 0.06 | 0.09 | 0.08 | 0.35 | 0.36 | 0.37 | 3873 |
North Pacific | 0.00 | 0.02 | 0.05 | 0.29 | 0.29 | 0.30 | 8266 |
Tropical Pacific | 0.08 | 0.11 | 0.15 | 0.18 | 0.18 | 0.19 | 7212 |
South Pacific | 0.07 | 0.10 | 0.09 | 0.25 | 0.26 | 0.28 | 10,788 |
Indian Ocean | 0.08 | 0.12 | 0.16 | 0.27 | 0.27 | 0.27 | 4147 |
Southern Ocean | 0.03 | 0.05 | −0.02 | 0.36 | 0.36 | 0.37 | 8372 |
Region | Mean Difference | Standard Deviation | Number of Obs. | ||||
---|---|---|---|---|---|---|---|
Control | S3Ref | S3ntRef | Control | S3Ref | S3ntRef | ||
Global Ocean | −0.10 | 0.07 | 0.09 | 0.38 | 0.38 | 0.38 | 33,227 |
North Atlantic | −0.08 | 0.16 | 0.16 | 0.50 | 0.50 | 0.51 | 6853 |
Tropical Atlantic | −0.17 | 0.06 | 0.09 | 0.27 | 0.25 | 0.25 | 2397 |
South Atlantic | −0.10 | −0.02 | 0.01 | 0.42 | 0.42 | 0.42 | 3329 |
North Pacific | −0.08 | 0.11 | 0.12 | 0.35 | 0.35 | 0.35 | 8503 |
Tropical Pacific | −0.08 | 0.08 | 0.11 | 0.20 | 0.20 | 0.20 | 7307 |
South Pacific | −0.10 | 0.00 | 0.04 | 0.26 | 0.26 | 0.25 | 9785 |
Indian Ocean | −0.16 | 0.07 | 0.09 | 0.29 | 0.26 | 0.26 | 4199 |
Southern Ocean | −0.12 | −0.04 | 0.01 | 0.41 | 0.41 | 0.40 | 7030 |
Region | Mean Difference | Standard Deviation | Number of Obs. | ||||
---|---|---|---|---|---|---|---|
Control | S3Ref | S3ntRef | Control | S3Ref | S3ntRef | ||
Global Ocean | −0.08 | 0.04 | 0.06 | 0.32 | 0.32 | 0.32 | 35,251 |
North Atlantic | −0.07 | −0.01 | 0.00 | 0.40 | 0.40 | 0.40 | 7151 |
Tropical Atlantic | −0.11 | 0.07 | 0.10 | 0.22 | 0.21 | 0.20 | 2665 |
South Atlantic | −0.08 | 0.05 | 0.09 | 0.35 | 0.36 | 0.36 | 3873 |
North Pacific | −0.09 | 0.01 | 0.02 | 0.29 | 0.30 | 0.29 | 8266 |
Tropical Pacific | −0.08 | 0.07 | 0.11 | 0.18 | 0.19 | 0.18 | 7212 |
South Pacific | −0.09 | 0.07 | 0.10 | 0.26 | 0.26 | 0.26 | 10,788 |
Indian Ocean | −0.08 | 0.10 | 0.12 | 0.27 | 0.27 | 0.27 | 4147 |
Southern Ocean | −0.11 | 0.03 | 0.05 | 0.36 | 0.36 | 0.36 | 8372 |
Region | Mean Difference | Standard Deviation | Number of Obs. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | S3VIIRSref | S3ntVIIRSref | S3VIIRSrefQC | S3ntVIIRSrefQC | Control | S3VIIRSref | S3ntVIIRSref | S3VIIRSrefQC | S3ntVIIRSrefQC | ||
Global Ocean | −0.10 | −0.06 | −0.06 | −0.03 | −0.02 | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 33,227 |
North Atlantic | −0.08 | −0.02 | −0.03 | 0.01 | 0.01 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 6853 |
Tropical Atlantic | −0.17 | −0.10 | −0.11 | −0.02 | 0.00 | 0.27 | 0.26 | 0.27 | 0.25 | 0.25 | 2397 |
South Atlantic | −0.10 | −0.08 | −0.08 | −0.06 | −0.05 | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 3329 |
North Pacific | −0.08 | −0.03 | −0.04 | 0.00 | 0.00 | 0.35 | 0.35 | 0.35 | 0.36 | 0.36 | 8503 |
Tropical Pacific | −0.08 | −0.04 | −0.04 | 0.02 | 0.04 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 7307 |
South Pacific | −0.10 | −0.08 | −0.08 | −0.06 | −0.05 | 0.26 | 0.26 | 0.26 | 0.26 | 0.26 | 9785 |
Indian Ocean | −0.16 | −0.10 | −0.11 | −0.04 | −0.03 | 0.29 | 0.28 | 0.28 | 0.28 | 0.28 | 4199 |
Southern Ocean | −0.12 | −0.11 | −0.10 | −0.10 | −0.10 | 0.41 | 0.40 | 0.41 | 0.40 | 0.41 | 7030 |
Region | Mean Difference | Standard Deviation | Number of Obs. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Control | S3VIIRSref | S3ntVIIRSref | S3VIIRSrefQC | S3ntVIIRSrefQC | Control | S3VIIRSref | S3ntVIIRSref | S3VIIRSrefQC | S3ntVIIRSrefQC | ||
Global Ocean | −0.08 | −0.05 | −0.06 | −0.03 | −0.02 | 0.32 | 0.32 | 0.32 | 0.32 | 0.32 | 35,251 |
North Atlantic | −0.07 | −0.05 | −0.05 | −0.03 | −0.03 | 0.40 | 0.40 | 0.40 | 0.40 | 0.40 | 7151 |
Tropical Atlantic | −0.11 | −0.05 | −0.06 | 0.01 | 0.03 | 0.22 | 0.21 | 0.21 | 0.21 | 0.21 | 2665 |
South Atlantic | −0.08 | −0.04 | −0.04 | −0.02 | −0.01 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 3873 |
North Pacific | −0.09 | −0.06 | −0.07 | −0.04 | −0.03 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 8266 |
Tropical Pacific | −0.08 | −0.03 | −0.04 | 0.02 | 0.04 | 0.18 | 0.18 | 0.18 | 0.19 | 0.18 | 7212 |
South Pacific | −0.09 | −0.04 | −0.05 | −0.02 | −0.02 | 0.26 | 0.26 | 0.26 | 0.26 | 0.27 | 10,788 |
Indian Ocean | −0.08 | −0.02 | −0.03 | 0.02 | 0.02 | 0.27 | 0.27 | 0.27 | 0.27 | 0.27 | 4147 |
Southern Ocean | −0.11 | −0.08 | −0.09 | −0.08 | −0.08 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 | 8372 |
OSTIA Config. 1 | MO 2 Analysis | Obs. 3 |
---|---|---|
S3ntRef | −0.15 | 0.09 |
S3VIIRSref | 0.11 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, C.; Good, S.; Worsfold, M. Use of SLSTR Sea Surface Temperature Data in OSTIA as a Reference Sensor: Implementation and Validation. Remote Sens. 2024, 16, 3396. https://doi.org/10.3390/rs16183396
Mao C, Good S, Worsfold M. Use of SLSTR Sea Surface Temperature Data in OSTIA as a Reference Sensor: Implementation and Validation. Remote Sensing. 2024; 16(18):3396. https://doi.org/10.3390/rs16183396
Chicago/Turabian StyleMao, Chongyuan, Simon Good, and Mark Worsfold. 2024. "Use of SLSTR Sea Surface Temperature Data in OSTIA as a Reference Sensor: Implementation and Validation" Remote Sensing 16, no. 18: 3396. https://doi.org/10.3390/rs16183396
APA StyleMao, C., Good, S., & Worsfold, M. (2024). Use of SLSTR Sea Surface Temperature Data in OSTIA as a Reference Sensor: Implementation and Validation. Remote Sensing, 16(18), 3396. https://doi.org/10.3390/rs16183396