Mapping Kinetic Energy Hotspots in the Persian Gulf and Oman Sea Using Surface Current Derived by Geodetic Observations and Data Assimilation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Description
2.2. Methodology
2.2.1. Estimation of TSC
- (i)
- The Ekman surface current is obtained from data provided by the NOAA.
- (ii)
- The geostrophic current is computed by determining the zonal () and meridional () velocity components based on the horizontal gradient of the dynamic topography (DT), as detailed in our previous studies [13,14]. The specific equations used to compute the geostrophic velocity components are provided below [13,14]:
2.2.2. Assimilation Using the 3DVAR Method
2.2.3. Estimation of Kinetic Energy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tawinprai, S.; Polnumtiang, S.; Suksomprom, P.; Waewsak, J.; Tangchaichit, K. Mesoscale/Microscale Modelling for Evaluation of Wind Energy Potential and Cost Energy in Developing Country Using a High-Resolution Grid: A Case Study in the Northeastern Region of Thailand. 2023. Available online: https://assets-eu.researchsquare.com/files/rs-2828376/v1/7cd18452-d627-42ab-9e91-37b6f4c0ee1c.pdf?c=1683539992 (accessed on 5 September 2024).
- Esteban, M.; Leary, D. Current developments and future prospects of offshore wind and ocean energy. Appl. Energy 2012, 90, 128–136. [Google Scholar] [CrossRef]
- Torres-Herrera, H.J.; Lozano-Medina, A. Methodological Proposal for the Assessment Potential of Pumped Hydropower Energy Storage: Case of Gran Canaria Island. Energies 2021, 14, 3553. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/report/ar6/wg1 (accessed on 5 September 2024).
- Pujol, M.-I.; Larnicol, G. Mediterranean Sea eddy kinetic energy variability from 11 years of altimetric data. J. Mar. Syst. 2005, 58, 121–142. [Google Scholar] [CrossRef]
- O’Rourke, F.; Boyle, F.; Reynolds, A. Tidal energy update. In Renewable Energy; Routledge: London, UK, 2018; pp. 451–476. [Google Scholar] [CrossRef]
- Uihlein, A.; Magagna, D. Wave and tidal current energy—A review of the current state of research beyond technology. Renew. Sustain. Energy Rev. 2016, 58, 1070–1081. [Google Scholar] [CrossRef]
- Coiro, D.P.; De Marco, A.; Scherillo, F.; Maisto, U.; Familio, R.; Troise, G. Harnessing marine current energy with tethered submerged systems: Experimental tests and numerical model analysis of an innovative concept. In Proceedings of the 2009 International Conference on Clean Electrical Power (ICCEP), Capri, Italy, 9–11 June 2009; pp. 76–86. [Google Scholar]
- Mackay, E. Resource assessment for wave energy. In Comprehensive Renewable Energy; Elsevier: Amsterdam, The Netherlands, 2012; pp. 11–77. [Google Scholar] [CrossRef]
- Lugo-Fernández, A.; Leben, R.R.; Hall, C.A. Kinematic metrics of the Loop Current in the Gulf of Mexico from satellite altimetry. Dyn. Atmos. Oceans 2016, 76, 268–282. [Google Scholar] [CrossRef]
- Ruiz, S.; Pascual, A.; Garau, B.; Pujol, I.; Tintoré, J. Vertical motion in the upper ocean from glider and altimetry data. Geophys. Res. Lett. 2009, 36, L14607. [Google Scholar] [CrossRef]
- Jiang, X.; Xie, B.; Bao, Y.; Song, Z. Global 3-hourly wind-wave and swell data for wave climate and wave energy resource research from 1950 to 2100. Sci. Data 2023, 10, 225. [Google Scholar] [CrossRef]
- Pirooznia, M.; Voosoghi, B.; Poreh, D.; Amini, A. Integrating Hydrography Observations and Geodetic Data for Enhanced Dynamic Topography Estimation. Remote. Sens. 2024, 16, 527. [Google Scholar] [CrossRef]
- Pirooznia, M.; Naeeni, M.R.; Tourian, M.J. Modeling total surface current in the Persian Gulf and the Oman Sea by combination of geodetic and hydrographic observations and assimilation with in situ current meter data. Acta Geophys. 2023, 71, 2839–2863. [Google Scholar] [CrossRef]
- Pirooznia, M.; Naeeni, M.R.; Atabati, A.; Tourian, M.J. Improving the Modeling of Sea Surface Currents in the Persian Gulf and the Oman Sea Using Data Assimilation of Satellite Altimetry and Hydrographic Observations. Remote. Sens. 2022, 14, 4901. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Poulain, P.-M.; Gerin, R.; Mauri, E.; Pennel, R. Wind Effects on Drogued and Undrogued Drifters in the Eastern Mediterranean. J. Atmospheric Ocean. Technol. 2009, 26, 1144–1156. [Google Scholar] [CrossRef]
- Stammer, D.; Wunsch, C. Preliminary assessment of the accuracy and precision of TOPEX/POSEIDON altimeter data with respect to the large-scale ocean circulation. J. Geophys. Res. Oceans 1994, 99, 24584–24604. [Google Scholar] [CrossRef]
- Rio, M.-H.; Poulain, P.-M.; Pascual, A.; Mauri, E.; Larnicol, G.; Santoleri, R. A Mean Dynamic Topography of the Mediterranean Sea computed from altimetric data, in-situ measurements and a general circulation model. J. Mar. Syst. 2007, 65, 484–508. [Google Scholar] [CrossRef]
- Escudier, R.; Bouffard, J.; Pascual, A.; Poulain, P.; Pujol, M. Improvement of coastal and mesoscale observation from space: Application to the northwestern Mediterranean Sea. Geophys. Res. Lett. 2013, 40, 2148–2153. [Google Scholar] [CrossRef]
- Sudre, J.; Maes, C.; Garçon, V. On the global estimates of geostrophic and Ekman surface currents. Limnol. Oceanogr. Fluids Environ. 2013, 3, 1–20. [Google Scholar] [CrossRef]
- Raj, R.P. Surface velocity estimates of the north Indian Ocean from satellite gravity and altimeter missions. Int. J. Remote Sens. 2016, 38, 296–313. [Google Scholar] [CrossRef]
- Poulain, P.; Menna, M.; Mauri, E. Surface geostrophic circulation of the Mediterranean Sea derived from drifter and satellite altimeter data. J. Phys. Oceanogr. 2012, 42, 973–990. [Google Scholar] [CrossRef]
- Carrillo, L.; Palacios-Hernández, E. Seasonal evolution of the geostrophic circulation in the northern Gulf of California. Estuar. Coast. Shelf Sci. 2002, 54, 157–173. [Google Scholar] [CrossRef]
- Palma-Lara, D.; Carrillo, L.; Trasviña-Castro, A.; Reyes-Mendoza, O.; Valle-Rodríguez, J. Analysis of coastal altimetry in the Mexican Caribbean. Adv. Space Res. 2023, 71, 964–974. [Google Scholar] [CrossRef]
- Sellers, C.; Ammirati, L.; Khalili, M.A.; Buján, S.; Rodas, R.A.; Di Martire, D. The Use DInSAR Technique for the Study of Land Subsidence Associated with Illegal Mining Activities in Zaruma–Ecuador, a Cultural Heritage Cite. In European Workshop on Structural Health Monitoring; Rizzo, P., Milazzo, A., Eds.; EWSHM Lecture Notes in Civil Engineering; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Khalili, M.A.; Guerriero, L.; Pouralizadeh, M.; Calcaterra, D.; Di Martire, D. Prediction of Deformation Caused by Landslides Based on Graph Convolution Networks Algorithm and Dinsar Technique. ISPRS Ann. Photogramm. Remote. Sens. Spat. Inf. Sci. 2023, X-4/W1-202, 391–397. [Google Scholar] [CrossRef]
- Ide, K.; Courtier, P.; Ghil, M.; Lorenc, A.C. Unified Notation for Data Assimilation: Operational, Sequential and Variational (gtSpecial IssueltData Assimilation in Meteology and Oceanography: Theory and Practice). J. Meteorol. Soc. Jpn. Ser. II 1997, 75, 181–189. [Google Scholar] [CrossRef]
- Cushman-Roisin, B.; Beckers, J.M. Chapter 7—Geostrophic Flows and Vorticity Dynamics. In Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects; Academic Press: Cambridge, MA, USA, 2011; Volume 101, pp. 205–238. [Google Scholar]
- Shenoi, S.S.; Saji, P.K.; Almeida, A.M. Near-surface circulation and kinetic energy in the tropical Indian Ocean de-rived from lagrangian drifters. J. Mar. Res. 1999, 57, 885–907. [Google Scholar] [CrossRef]
- Reynolds, R.M. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman—Results from the Mt Mitchell expedition. Mar. Pollut. Bull. 1993, 27, 35–59. [Google Scholar] [CrossRef]
- Fallahi, M.; Torabi Azad, M.; Mansoury, D. A Hydrodynamic Model of Tidal Current in the Strait of Hormuz. Int. J. Coast. Offshore Environ. Eng. 2021, 6, 37–45. [Google Scholar] [CrossRef]
- Soltanpour, A.; Pirooznia, M.; Aminjafari, S.; Zareian, P. Persian Gulf and Oman Sea tide modeling using satellite altimetry and tide gauge data (TM-IR01). Mar. Georesources Geotechnol. 2017, 36, 677–687. [Google Scholar] [CrossRef]
- Pugh, D.T. Tides, Surges and Mean Sea-Level; John Wiley & Sons: Chichester, UK, 1987. [Google Scholar]
- Pous, S.P.; Carton, X.; Lazure, P. Hydrology and circulation in the Strait of Hormuz and the Gulf of Oman—Results from the GOGP99 Experiment: Strait of Hormuz. J. Geophys. Res. Oceans 2004, 109, C12037. [Google Scholar] [CrossRef]
ID | Geographic Region | Instrumentation | Coordinates (Lat, Lon) | Periods (mm-dd-yyyy) | Sources |
---|---|---|---|---|---|
1 | Khuran | ADCP | 28.01, 55.45 | 08-30-2005 to 10-04-2005 | INIO |
2 | Konarak | ADCP | 25.37, 60.43 | 08-21-2006 to 09-03-2007 | PMO |
3 | Chabahar | ADCP | 25.29, 60.67 | 08-21-2006 to 09-03-2008 | PMO |
4 | Bushehr | ADCP | 28.97, 50.66 | 06-15-2010 to 07-26-2011 | PMO |
5 | Taheri | ADCP | 27.63, 52.36 | 08-23-2018 to 09-24-2022 | PMO |
6 | Nayband Gulf | ADCP | 27.42, 52.65 | 05-11-2009 to 07-12-2009 | PMO |
7 | Nakhl Taghi | ADCP | 27.49, 52.57 | 08-22-2008 to 09-24-2009 | PMO |
8 | Kangan | ADCP | 26.83, 52.04 | 08-23-2008 to 09-25-2009 | PMO |
10 | Jask | ADCP | 26.05, 57.76 | 07-16-2010 to 01-23-2011 | PMO |
11 | Hormuz | ADCP | 27.15, 56.46 | 10-06-2009 to 10-12-2010 | PMO |
12 | Googsar | ADCP | 25.78, 57.77 | 07-12-2010 to 10-28-2010 | PMO |
13 | Rajaei | ADCP | 27.07, 56.08 | 10-12-2009 to 01-12-2010 | PMO |
Regions | Months | Mean | Std | Min | Max |
---|---|---|---|---|---|
Region 1 (Oman Sea) | January | 5.404 | 9.221 | 0.012 | 101.38 |
February | 7.673 | 8.122 | 0.211 | 101.2 | |
March | 7.668 | 5.241 | 0.157 | 103.2 | |
April | 9.531 | 12.34 | 0.397 | 110.15 | |
May | 10.618 | 5.023 | 1.472 | 106.85 | |
June | 9.939 | 6.045 | 0.792 | 101.64 | |
July | 10.794 | 11.347 | 1.118 | 94.876 | |
August | 9.931 | 10.087 | 0.172 | 96.29 | |
September | 8.053 | 4.087 | 0.353 | 90.74 | |
October | 7.136 | 6.79 | 0.052 | 96.468 | |
November | 8.697 | 8.942 | 0.286 | 102.51 | |
December | 8.273 | 9.234 | 0.406 | 101.66 | |
Region 2 (Persian Gulf) | January | 10.652 | 11.476 | 0.001 | 129.4 |
February | 12.405 | 5.098 | 0.511 | 120.45 | |
March | 12.493 | 8.901 | 0.761 | 122.1 | |
April | 12.146 | 7.056 | 0.521 | 123.01 | |
May | 13.563 | 9.551 | 0.373 | 125.58 | |
June | 13.567 | 10.97 | 0.503 | 117.35 | |
July | 11.282 | 6.781 | 0.848 | 101.67 | |
August | 10.601 | 8.901 | 0.259 | 87.477 | |
September | 10.246 | 7.321 | 0.249 | 85.179 | |
October | 10.76 | 8.903 | 0.193 | 112.4 | |
November | 12.922 | 5.112 | 0.269 | 133.16 | |
December | 14.066 | 6.583 | 0.457 | 134.76 | |
Region 3 (Strait of Hormuz) | January | 10.146 | 5.403 | 0.001 | 128.36 |
February | 11.251 | 12.231 | 1.531 | 118.71 | |
March | 11.3 | 8.651 | 1.158 | 112.86 | |
April | 10.917 | 9.767 | 0.604 | 111.42 | |
May | 10.541 | 5.239 | 0.252 | 117.13 | |
June | 11.106 | 6.743 | 0.313 | 127.52 | |
July | 10.976 | 9.14 | 0.788 | 115.65 | |
August | 11.696 | 10.461 | 0.738 | 106.37 | |
September | 10.804 | 11.031 | 0.668 | 108.89 | |
October | 10.115 | 8.901 | 0.07 | 120.43 | |
November | 12.126 | 9.671 | 0.917 | 133.69 | |
December | 11.302 | 6.213 | 0.531 | 135.53 |
Stations | Month | Before Data Assimilation | After Data Assimilation |
---|---|---|---|
Konarak | January | 18.31 | 4.14 |
February | 10.24 | 5.32 | |
March | 14.17 | 3.81 | |
April | 17.22 | 6.11 | |
May | 7.15 | 3.16 | |
June | 9.82 | 5.1 | |
July | 10.3 | 3.91 | |
August | 15.68 | 4.21 | |
September | 10.72 | 3.45 | |
October | 12.94 | 4.8 | |
November | 13.31 | 5.26 | |
December | 10.74 | 3.44 | |
Nakhl Taghi | January | 11.26 | 4.21 |
February | 12.37 | 5.32 | |
March | 11.56 | 4.65 | |
April | 10.33 | 5.3 | |
May | 9.62 | 4.12 | |
June | 14.01 | 5.71 | |
July | 12.1 | 4.47 | |
August | 10.44 | 4.31 | |
September | 8.11 | 5.53 | |
October | 6.92 | 3.38 | |
November | 7.11 | 6.72 | |
December | 11.5 | 4.83 |
Areas | Lat (deg) | Lon (deg) | Maximum Speed (cm/s) | Minimum Speed (cm/s) | Max Energy (m2/s2) | Min Energy (m2/s2) |
---|---|---|---|---|---|---|
khowre Musa | 29.97634 | 49.19039 | 130 | 109 | 2.5 | 1.8 |
Kangan | 27.61005 | 52.41835 | 119 | 85 | 2.3 | 1.4 |
Hormuz | 27.02569 | 56.57842 | 135 | 103 | 2.6 | 1.7 |
Mangoli | 26.14825 | 57.09076 | 130 | 115 | 2.5 | 1.9 |
Jask | 25.63451 | 57.76305 | 109 | 91 | 2.1 | 1.5 |
Pasabandar | 25.00698 | 61.35016 | 99 | 67 | 1.9 | 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pirooznia, M.; Voosoghi, B.; Khalili, M.A.; Di Martire, D.; Amini, A. Mapping Kinetic Energy Hotspots in the Persian Gulf and Oman Sea Using Surface Current Derived by Geodetic Observations and Data Assimilation. Remote Sens. 2024, 16, 3340. https://doi.org/10.3390/rs16173340
Pirooznia M, Voosoghi B, Khalili MA, Di Martire D, Amini A. Mapping Kinetic Energy Hotspots in the Persian Gulf and Oman Sea Using Surface Current Derived by Geodetic Observations and Data Assimilation. Remote Sensing. 2024; 16(17):3340. https://doi.org/10.3390/rs16173340
Chicago/Turabian StylePirooznia, Mahmoud, Behzad Voosoghi, Mohammad Amin Khalili, Diego Di Martire, and Arash Amini. 2024. "Mapping Kinetic Energy Hotspots in the Persian Gulf and Oman Sea Using Surface Current Derived by Geodetic Observations and Data Assimilation" Remote Sensing 16, no. 17: 3340. https://doi.org/10.3390/rs16173340
APA StylePirooznia, M., Voosoghi, B., Khalili, M. A., Di Martire, D., & Amini, A. (2024). Mapping Kinetic Energy Hotspots in the Persian Gulf and Oman Sea Using Surface Current Derived by Geodetic Observations and Data Assimilation. Remote Sensing, 16(17), 3340. https://doi.org/10.3390/rs16173340