The Influences of Indian Monsoon Phases on Aerosol Distribution and Composition over India
Abstract
:1. Introduction
2. Data Sets
2.1. Moderate Resolution Imaging Spectrometer (MODIS)
2.2. Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)
2.3. HYSPLIT
3. Results and Discussion
3.1. Seasonal Variations in AOD
3.2. Variability of AOD during Active and Break Spells, Vertical Distribution from CALIPSO Data, Types, and Sources (HYPLIT Model)
3.3. Variability of AOD during Strong and Week Monsoon Years, Vertical Distribution from CALIPSO Data, Types, and Sources (HYPLIT Model)
4. Summary and Conclusions
- Over the Indian region, aerosol distribution exhibits clear differences between strong and weak monsoon years, as well as between active and break days. During active monsoon phases (with higher rainfall), lower AOD and aerosol extinction are observed. This can be attributed to increased removal of aerosols by the washout and rainout processes, leading to a shorter atmospheric lifespan for these particles. Conversely, break days (associated with drier conditions) experience higher AOD and aerosol extinction, due to the buildup of aerosols with longer atmospheric lifetime in the absence of significant rainfall.
- Interestingly, the strong association between columnar AOD and aerosol extinction was observed during break and active days and was less evident during strong and weak monsoon years. Additionally, strong monsoon years have shown significant increases in AOD, particularly in Central India. This phenomenon might be explained by the presence of prolonged and intense dry spells (breaks) during these years, leading to a substantial rise in the aerosol burden across the Indian region.
- CALIPSO VFM measurements revealed distinct aerosol compositions during active and break phases. During active phases, polluted dust (29%), dusty marine (26%), dust (15%), and elevated smoke (14%) aerosols were the dominant types. In contrast, the break phase was dominated by polluted dust (43%) and dusty marine (36%) aerosols, with a lower contribution from dust (11%). Interestingly, the compositions during strong and weak monsoon years differed from the active–break pattern. Here, dust and polluted dust aerosols were the primary contributors, with 43% and 31% during strong monsoons, and 38% and 35% during weak monsoons, respectively.
- HYSPLIT trajectory analysis revealed that, during the active phase, a significant portion of the air mass reaching the receptor site originated from the Arabian Sea (approximately 94%). A smaller fraction (6%) originated from the continental region of east–central India. In contrast, during the break phase, the air masses primarily originated from the African continent, transporting mineral dust through lower-level southwesterly winds. This shift in air mass origin influences the aerosol composition, reflecting the combined properties of both land and ocean sources during the break phase.
- This study emphasizes the critical role of aerosol distribution in influencing Indian Summer Monsoon rainfall patterns, with variations observed between strong and weak monsoon years, as well as active and break days. The findings suggest that regional rainfall variability is likely linked to two key factors: (1) the transport of aerosols from different source regions and (2) the relative contribution of absorbing and scattering aerosol types within the overall aerosol population.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. 1997, 102, 6831–6864. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Ganguly, D.; Rasch, P.J.; Wang, H.; Yoon, J.H. Fast and slow responses of the South Asian monsoon system to anthropogenic aerosols. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G. Global and regional climate changes due to black carbon. Nat. Geosci. 2008, 1, 221–227. [Google Scholar] [CrossRef]
- Ramanathan, V.; Chung, C.; Kim, D.; Bettge, T.; Buja, L.; Kiehl, J.T.; Washington, W.M.; Fu, Q.; Sikka, D.R.; Wild, M. Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proc. Natl. Acad. Sci. USA 2005, 102, 5326–5333. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.M.; Kim, K.M. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophys. Res. Lett. 2006, 33, 1–5. [Google Scholar] [CrossRef]
- Vinoj, V.; Rasch, P.J.; Wang, H.; Yoon, J.H.; Ma, P.L.; Landu, K.; Singh, B. Short-term modulation of Indian summer monsoon rainfall by West Asian dust. Nat. Geosci. 2014, 7, 308–313. [Google Scholar] [CrossRef]
- Shaik, D.S.; Kant, Y.; Mitra, D.; Babu, S.S. Assessment of aerosol characteristics and radiative forcing over northwest himalayan region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5314–5321. [Google Scholar] [CrossRef]
- Gadgil, S.; Gadgil, S. The Indian monsoon, GDP and agriculture. Econ. Political Wkly. 2006, 41, 4887–4895. [Google Scholar]
- Mishra, V.; Smoliak, B.V.; Lettenmaier, D.P.; Wallace, J.M. A prominent pattern of year-to-year variability in Indian Summer Monsoon Rainfall. Proc. Natl. Acad. Sci. USA 2012, 109, 7213–7217. [Google Scholar] [CrossRef]
- Goswami, B.N.; Ajaya Mohan, R.S. Intraseasonal oscillations and interannual variability of the Indian summer monsoon. J. Clim. 2001, 14, 1180–1198. [Google Scholar] [CrossRef]
- Rajeevan, M.; Gadgil, S.; Bhate, J. Active and break spells of the indian summer monsoon. J. Earth Syst. Sci. 2010, 119, 229–247. [Google Scholar] [CrossRef]
- Dave, P.; Bhushan, M.; Venkataraman, C. Aerosols cause intraseasonal short-term suppression of Indian monsoon rainfall. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Sarangi, C.; Kanawade, V.P.; Tripathi, S.N.; Thomas, A.; Ganguly, D. Aerosol-induced intensification of cooling effect of clouds during Indian summer monsoon. Nat. Commun. 2018, 9, 5314–5321. [Google Scholar] [CrossRef] [PubMed]
- Sanap, S.D.; Pandithurai, G. The effect of absorbing aerosols on Indian monsoon circulation and rainfall: A review. Atmos. Res. 2015, 164–165, 318–327. [Google Scholar] [CrossRef]
- Harikishan, G.; Padmakumari, B.; Maheskumar, R.S.; Kulkarni, J.R. Radiative effect of dust aerosols on cloud microphysics and meso-scale dynamics during monsoon breaks over Arabian sea. Atmos. Environ. 2015, 105, 22–31. [Google Scholar] [CrossRef]
- Vinoj, V.; Satheesh, S.K.; Babu, S.S.; Moorthy, K.K. Large aerosol optical depths observed at an urban location in southern India associated with rain-deficit summer monsoon season. Ann. Geophys. 2014, 22, 3073–3077. [Google Scholar] [CrossRef]
- Surendran, S.; Ajay Anand, K.V.; Ravindran, S.; Rajendran, K. Exacerbation of Indian Summer Monsoon Breaks by the Indirect Effect of Regional Dust Aerosols. Geophys. Res. Lett. 2022, 49, e2022GL101106. [Google Scholar] [CrossRef]
- Isokääntä, S.; Kim, P.; Mikkonen, S.; Kühn, T.; Kokkola, H.; Yli-Juuti, T.; Heikkinen, L.; Luoma, K.; Petäjä, T.; Kipling, Z.; et al. The effect of clouds and precipitation on the aerosol concentrations and composition in a boreal forest environment. Atmos. Chem. Phys. 2022, 22, 11823–11843. [Google Scholar] [CrossRef]
- Wilcox, E.M.; Ramanathan, V. The impact of observed precipitation upon the transport of aerosols from South Asia. Tellus B Chem. Phys. Meteorol. 2004, 56, 435. [Google Scholar] [CrossRef]
- Basha, G.; Ratnam, M.V.; Jiang, J.H.; Kishore, P.; Babu, S.R. Influence of Indian Summer Monsoon on Tropopause, Trace Gases and Aerosols in Asian Summer Monsoon Anticyclone Observed by COSMIC, MLS and CALIPSO. Remote Sens. Artic. 2021, 13, 3486. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Barnes, W.; Masuoka, E.J. Introduction to MODIS and an overview of associated activities. Earth Sci. Satell. Remote Sens. 2006, 1, 12–32. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Lee, J.; Kim, W.V.; Dutcher, S.T. Validation, stability, and consistency of MODIS Collection 6.1 and VIIRS Version 1 Deep Blue aerosol data over land. J. Geophys. Res. Atmos. 2019, 124, 4658–4688. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison. Atmos. Environ. 2019, 201, 428–440. [Google Scholar] [CrossRef]
- Winker, D.M.; Hostetler, C.A.; Vaughan, M.A.; Omar, A.H. CALIOP Algorithm Theoretical Basis Document Part 1: CALIOP Instrument, and Algorithms Overview CALIOP Algorithm Theoretical Basis Document Part 1: CALIOP Instrument, and Algorithms Overview. 2006. [Google Scholar]
- Basha, G.; Ratnam, M.V.; Kishore, P. Asian summer monsoon anticyclone: Trends and variability. Atmos. Chem. Phys. 2020, 20, 6789–6801. [Google Scholar] [CrossRef]
- Ratnam, M.V.; Prasad, P.; Akhil Raj, S.T.; Roja Raman, M.; Basha, G. Changing patterns in aerosol vertical distribution over South and East Asia. Sci. Rep. 2021, 11, 308. [Google Scholar] [CrossRef]
- Pandithurai, G.; Dipu, S.; Dani, K.K.; Tiwari, S.; Bisht, D.S.; Devara, P.C.S.; Pinker, R.T. Aerosol radiative forcing during dust events over New Delhi, India. J. Geophys. Res. Atmos. 2008, 113, 1–13. [Google Scholar] [CrossRef]
- Kumar, M.; Parmar, K.S.; Kumar, D.B.; Mhawish, A.; Broday, D.M.; Mall, R.K.; Banerjee, T. Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields. Atmos. Environ. 2018, 180, 37–50. [Google Scholar] [CrossRef]
- Madineni, V.R.; Atmospheric, N.; Prasad, P.; Mekalathur, R.R.; Rao, S.V.B. Role of dynamics on the formation and maintenance of the elevated aerosol layer during monsoon season over south-east peninsular India Role of dynamics on the formation and maintenance of the elevated aerosol layer during monsoon season over south-east peninsular India. Atmos. Environ. 2018, 188, 43–49. [Google Scholar] [CrossRef]
- Prasad, P.; Raman, M.R.; Ratnam, M.V.; Ravikiran, V.; Madhavan, B.L.; Rao, S.V.B. Noc-turnal, seasonal and intra-annual variability of tropospheric aerosols observed usingground-based and space-borne lidars over a tropical location of India. Atmos. Environ. 2019, 213, 185–198. [Google Scholar] [CrossRef]
- Prijith, S.S.; Suresh Babu, S.; Lakshmi, N.B.; Satheesh, S.K.; Krishna Moorthy, K. Meridional gradients in aerosol vertical distribution over Indian Mainland: Observations and model simulations. Atmos. Environ. 2016, 125, 337–345. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Ji, B.; Singh, A.; Singh, V.; Bisht, D.S.; Tiwari, S.; Srivastava, M.K. Implications of different aerosol species to direct radiative forcing and atmospheric heating rate. Atmos. Environ. 2020, 241, 117820. [Google Scholar] [CrossRef]
- Lelieveld, J.; Bourtsoukidis, E.; Brühl, C.; Fischer, H.; Fuchs, H.; Harder, H.; Hofzumahaus, A.; Holland, F.; Marno, D.; Neumaier, M.; et al. The south Asian monsoon-Pollution pump and purifier. Science 2018, 61, 270–273. [Google Scholar] [CrossRef]
- Dumka, U.C.; Saheb, S.D.; Kaskaoutis, D.G.; Kant, Y.; Mitra, D. Columnar aerosol characteristics and radiative forcing over the Doon Valley in the Shivalik range of northwestern Himalayas. Environ. Sci. Pollut. Res. 2016, 23, 25467–25484. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Khushboo, R.; Raj, R.; Singh, N. Spaceborne observations of aerosol vertical distribution over Indian mainland (2009–2018). Atmos. Environ. 2021, 244, 117902. [Google Scholar] [CrossRef]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef]
- Kant, Y.; Shaik, D.S.; Mitra, D.; Chandola, H.C.; Babu, S.S.; Chauhan, P. Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing. Environ. Pollut. 2020, 257, 113446. [Google Scholar] [CrossRef]
- Ramanathan, V.C.P.J.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef]
- Debnath, S.; Govardhan, G.; Saha, S.K.; Hazra, A.; Pohkrel, S.; Jena, C.; Kumar, R.; Ghude, S.D. Impact of dust aerosols on the Indian Summer Monsoon Rainfall on intra-seasonal time-scale. Atmos. Environ. 2023, 305, 119802. [Google Scholar] [CrossRef]
- Sajani, S.; Moorthy, K.K.; Rajendran, K.; Nanjundiah, R.S. Monsoon sensitivity to aerosol direct radiative forcing. J. Earth Syst. Sci. 2012, 121, 867–889. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Chakraborty, A.; Venugopal, V. Role of aerosols in modulating cloud properties during active–break cycle of Indian summer monsoon. Clim. Dyn. 2017, 49, 2131–2145. [Google Scholar] [CrossRef]
- Shaik, D.S.; Kant, Y.; Sateesh, M.; Sharma, V.; Rawat, D.S.; Chandola, H.C. Spatio-temporal variation of biomass burning fires over Indian region using satellite data. In Atmospheric Remote Sensing: Principles and Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 121–138. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, P.I.; Ratnam, D.V.; Prasad, P.; Saheb, S.D.; Jiang, J.H.; Basha, G.; Kishore, P.; Patil, C.S. The Influences of Indian Monsoon Phases on Aerosol Distribution and Composition over India. Remote Sens. 2024, 16, 3171. https://doi.org/10.3390/rs16173171
Khan PI, Ratnam DV, Prasad P, Saheb SD, Jiang JH, Basha G, Kishore P, Patil CS. The Influences of Indian Monsoon Phases on Aerosol Distribution and Composition over India. Remote Sensing. 2024; 16(17):3171. https://doi.org/10.3390/rs16173171
Chicago/Turabian StyleKhan, Pathan Imran, Devanaboyina Venkata Ratnam, Perumal Prasad, Shaik Darga Saheb, Jonathan H. Jiang, Ghouse Basha, Pangaluru Kishore, and Chanabasanagouda S. Patil. 2024. "The Influences of Indian Monsoon Phases on Aerosol Distribution and Composition over India" Remote Sensing 16, no. 17: 3171. https://doi.org/10.3390/rs16173171
APA StyleKhan, P. I., Ratnam, D. V., Prasad, P., Saheb, S. D., Jiang, J. H., Basha, G., Kishore, P., & Patil, C. S. (2024). The Influences of Indian Monsoon Phases on Aerosol Distribution and Composition over India. Remote Sensing, 16(17), 3171. https://doi.org/10.3390/rs16173171