Regional Urban Shrinkage Can Enhance Ecosystem Services—Evidence from China’s Rust Belt
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources and Processing
3. Research Methods
3.1. Coding Urban Shrinkage Types
3.1.1. Quantifying Urban Shrinkage Trends
3.1.2. Definition of the Comprehensive Urban Shrinkage Index
3.1.3. Coding Urban Shrinkage Trajectories Based on the
3.1.4. Classification of Shrinkage Types Based on Shrinkage-Trajectory Encoding
3.2. Quantification of ESs and Selection of Multidimensional Driving Factors
3.2.1. Quantification and Integration of Ecosystem Services
3.2.2. Selection and Classification of Driving Factors
3.3. Exploring the Importance and Thresholds of Driving Factors
3.3.1. Model Fitting Choices
3.3.2. Designing the Learning Process
3.3.3. Interpreting Model Learning Outcomes
4. Results
4.1. Encoding Urban Shrinkage Types
4.1.1. Spatiotemporal Patterns of Urban Shrinkage Trends
4.1.2. Spatiotemporal Trajectories and Encoding of Urban Shrinkage Intensity
4.2. Temporal and Spatial Patterns of ESs
4.3. Spatiotemporal Dynamics of Ecosystem Services in Shrinking Cities
4.4. Relationship between Driving Factors and Changes in ESs
4.4.1. Factor Importance Analysis
4.4.2. Non-Linear Relationship of Driving Factors on ESs
5. Discussion
5.1. Contribution of Urban Shrinkage to ES Enhancement
5.2. Identifying Key Factors Driving ES Changes in Different Types of Shrinking Cities
5.3. Threshold Analysis for Sustainable Urban Development
5.4. Revitalizing Shrinking Cities through Ecological Management
5.5. Limitations and Prospects
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, P.; Wang, K. Urban shrinkage: Connotation-sinicization-framework of analysis. Prog. Geogr. 2022, 41, 1478–1491. [Google Scholar] [CrossRef]
- Zhai, W.; Jiang, Z.; Meng, X.; Zhang, X.; Zhao, M.; Long, Y. Satellite monitoring of shrinking cities on the globe and containment solutions. iScience 2022, 25, 104411. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Jiang, Z.; Wang, X.; Long, Y. Shrinking cities on the globe: Evidence from LandScan 2000–2019. Environ. Plan. A Econ. Space 2021, 53, 1244–1248. [Google Scholar] [CrossRef]
- Colglazier, W. Sustainable development agenda: 2030. Science 2015, 349, 1048–1050. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Fu, Y.; Kong, X.; Zhang, F. Prefecture-level city shrinkage on the regional dimension in China: Spatiotemporal change and internal relations. Sustain. Cities Soc. 2019, 47, 101490. [Google Scholar] [CrossRef]
- Chen, J.; Kinoshita, T.; Li, H.; Luo, S.; Su, D. Which green is more equitable? A study of urban green space equity based on morphological spatial patterns. Urban For. Urban Green. 2024, 91, 128178. [Google Scholar] [CrossRef]
- Kim, G.; Newman, G.; Jiang, B. Urban regeneration: Community engagement process for vacant land in declining cities. Cities 2020, 102, 102730. [Google Scholar] [CrossRef] [PubMed]
- Sha, S.; Cheng, Q.; Lu, M. Building a “reservoir of social resilience”: A strategy for social infrastructure regeneration in shrinking cities based on social network analysis. Habitat Int. 2024, 143, 102991. [Google Scholar] [CrossRef]
- Bernt, M. The limits of shrinkage: Conceptual pitfalls and alternatives in the discussion of urban population loss. Int. J. Urban Reg. Res. 2016, 40, 441–450. [Google Scholar] [CrossRef]
- Costanza, R.; d’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’neill, R.V.; Paruelo, J. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.; Ma, S.; Qi, J.; Yan, T. Assessing an ecological security network for a rapid urbanization region in Eastern China. Land Degrad. Dev. 2021, 32, 2642–2660. [Google Scholar] [CrossRef]
- Eger, A.M.; Marzinelli, E.M.; Beas-Luna, R.; Blain, C.O.; Blamey, L.K.; Byrnes, J.E.; Carnell, P.E.; Choi, C.G.; Hessing-Lewis, M.; Kim, K.Y. The value of ecosystem services in global marine kelp forests. Nat. Commun. 2023, 14, 1894. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, B.; Dong, H.; Zhou, K.; Zhang, X. The impact of urbanization on ecosystem services: Both time and space are important to identify driving forces. J. Environ. Manag. 2023, 347, 119161. [Google Scholar] [CrossRef] [PubMed]
- Su, S.; Xiao, R.; Jiang, Z.; Zhang, Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl. Geogr. 2012, 34, 295–305. [Google Scholar] [CrossRef]
- Xiao, H.; Duan, Z.; Zhou, Y.; Zhang, N.; Shan, Y.; Lin, X.; Liu, G. CO2 emission patterns in shrinking and growing cities: A case study of Northeast China and the Yangtze River Delta. Appl. Energy 2019, 251, 113384. [Google Scholar] [CrossRef]
- Peng, X.; Zhou, Y.; Fu, X.; Xu, J. Study on the spatial-temporal pattern and evolution of surface urban heat island in 180 shrinking cities in China. Sustain. Cities Soc. 2022, 84, 104018. [Google Scholar] [CrossRef]
- Rao, Y.; Wu, C.; He, Q. The antagonistic effect of urban growth pattern and shrinking cities on air quality: Based on the empirical analysis of 174 cities in China. Sustain. Cities Soc. 2023, 97, 104752. [Google Scholar] [CrossRef]
- Sun, J.; Zhou, T. Urban shrinkage and eco-efficiency: The mediating effects of industry, innovation and land-use. Environ. Impact Assess. Rev. 2023, 98, 106921. [Google Scholar] [CrossRef]
- Haase, D.; Haase, A.; Rink, D. Conceptualizing the nexus between urban shrinkage and ecosystem services. Landsc. Urban Plan. 2014, 132, 159–169. [Google Scholar] [CrossRef]
- Lauf, S.; Haase, D.; Kleinschmit, B. The effects of growth, shrinkage, population aging and preference shifts on urban development—A spatial scenario analysis of Berlin, Germany. Land Use Policy 2016, 52, 240–254. [Google Scholar] [CrossRef]
- Wu, H.; Fang, S.; Yang, Y.; Cheng, J. Changes in habitat quality of nature reserves in depopulating areas due to anthropogenic pressure: Evidence from Northeast China, 2000–2018. Ecol. Indic. 2022, 138, 108844. [Google Scholar] [CrossRef]
- Xue, Q.; Lu, L.; Zhang, Y.; Qin, C. Spatiotemporal Evolution and Coupling Analysis of Human Footprints and Habitat Quality: Evidence of 21 Consecutive Years in China. Land 2024, 13, 980. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Zhang, Y. Evaluation and analysis of the impact of coastal urban impervious surfaces on ecological environments. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 8721–8733. [Google Scholar] [CrossRef]
- Zhang, Y.; Ding, X.; Dong, L.; Yu, S. Research on spatiotemporal patterns and influencing factors of county-level urban shrinkage in urbanizing China. Sustain. Cities Soc. 2024, 109, 105544. [Google Scholar] [CrossRef]
- Martinez-Fernandez, C.; Weyman, T.; Fol, S.; Audirac, I.; Cunningham-Sabot, E.; Wiechmann, T.; Yahagi, H. Shrinking cities in Australia, Japan, Europe and the USA: From a global process to local policy responses. Prog. Plan. 2016, 105, 1–48. [Google Scholar] [CrossRef]
- He, X.; Guan, D.; Zhou, L.; Zhang, Y.; Gao, W.; Sun, L.; Huang, D.; Li, Z.; Cao, J.; Su, X. Quantifying spatiotemporal patterns and influencing factors of urban shrinkage in China within a multidimensional framework: A case study of the Yangtze River Economic Belt. Sustain. Cities Soc. 2023, 91, 104452. [Google Scholar] [CrossRef]
- Yu, W.; Yang, J.; Sun, D.; Xue, B.; Sun, W.; Ren, J.; Yu, H.; Xiao, X.; Xia, J.C.; Li, X. Shared insights for heat health risk adaptation in metropolitan areas of developing countries. iScience 2024, 27, 109728. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Yang, J.; Li, T.; Jin, Y.; Sun, D. Morphological and functional polycentric structure assessment of megacity: An integrated approach with spatial distribution and interaction. Sustain. Cities Soc. 2022, 80, 103800. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, C.; Ma, Z.; Hu, S.; Zhang, J.; Liu, W. Identification of shrinkage and growth patterns of a shrinking city in China based on nighttime light data: A case study of Yichun. Sustainability 2019, 11, 6906. [Google Scholar] [CrossRef]
- Niu, W.; Xia, H.; Wang, R.; Pan, L.; Meng, Q.; Qin, Y.; Li, R.; Zhao, X.; Bian, X.; Zhao, W. Research on large-scale urban shrinkage and expansion in the Yellow River affected area using night light data. ISPRS Int. J. Geo-Inf. 2020, 10, 5. [Google Scholar] [CrossRef]
- Dong, B.; Ye, Y.; You, S.; Zheng, Q.; Huang, L.; Zhu, C.; Tong, C.; Li, S.; Li, Y.; Wang, K. Identifying and classifying shrinking cities using long-term continuous night-time light time series. Remote Sens. 2021, 13, 3142. [Google Scholar] [CrossRef]
- Li, Z.; Chang, J.; Wang, Z.; Chen, Y.; Li, C. Stability of regional ecological supply-demand is enhanced by complex network modelling: Evidence from the Xuzhou Metropolitan Area, China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 1857–1873. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, J.; Li, Z.; Ming, L.; Li, C. Influence of land use change on habitat quality: A case study of coal mining subsidence areas. Environ. Monit. Assess. 2024, 196, 535. [Google Scholar] [CrossRef]
- Mei, Z.; Li, C.; Zhao, J.; Li, Z.; Chen, K.; Huang, X.; Zhao, Z. The Temporal and Spatial Evolution Characteristics and Driving Factors of Ecosystem Service Bundles in Anhui Province, China. Land 2024, 13, 736. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, Y.; Xian, C.; Zhang, L.; Zou, Z. How urbanization affect the ecosystem health of Tibet based on terrain gradients: A case study of Shannan, China. Ecosyst. Health Sustain. 2022, 8, 2097449. [Google Scholar] [CrossRef]
- Zhang, Z.; Tong, Z.; Zhang, L.; Liu, Y. What are the dominant factors and optimal driving threshold for the synergy and tradeoff between ecosystem services, from a nonlinear coupling perspective? J. Clean. Prod. 2023, 422, 138609. [Google Scholar] [CrossRef]
- Feng, Q.; Zhao, W.; Fu, B.; Ding, J.; Wang, S. Ecosystem service trade-offs and their influencing factors: A case study in the Loess Plateau of China. Sci. Total Environ. 2017, 607, 1250–1263. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Li, L.; Wang, S.; Huang, J.; Xie, X.; Wang, Y. What are the dominant drivers and optimal thresholds for a healthy ecosystem in the Yellow River Basin, China? from a perspective of nonlinear nexus. Ecol. Indic. 2024, 162, 111997. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Hou, W. Nonlinear effects of landscape patterns on ecosystem services at multiple scales based on gradient boosting decision tree models. Remote Sens. 2023, 15, 1919. [Google Scholar] [CrossRef]
- Chen, X.; Lang, W.; Yuan, Y.; Yan, G.; Hou, X. Conceptualizing the nexus between spatiotemporal shrinkage patterns of natural cities and driving mechanisms: Insights into urban shrinkage in Northeast China. Cities 2024, 152, 105179. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, K.; Cao, N.; Liu, J. Geographical cognition and governance logic of regional urban shrinkage in Northeast China. Acta Geogr. Sin. 2024, 79, 1918–1939. [Google Scholar]
- Fu, J.; Xiao, G.; Wu, C. Urban green transformation in Northeast China: A comparative study with Jiangsu, Zhejiang and Guangdong provinces. J. Clean. Prod. 2020, 273, 122551. [Google Scholar] [CrossRef]
- Sun, P.; Wang, K. Identification and stage division of urban shrinkage in the three provinces of Northeast China. Acta Geogr. Sin. 2021, 76, 1366–1379. [Google Scholar]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data Discuss. 2020, 13, 2753–2776. [Google Scholar] [CrossRef]
- Sicard, P.; Mangin, A.; Hebel, P.; Malléa, P. Detection and estimation trends linked to air quality and mortality on French Riviera over the 1990–2005 period. Sci. Total Environ. 2010, 408, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Liu, M.; Gao, C.; Zhang, Y.; She, Q.; Long, L.; Tu, Y.; Yang, Y. Greening and browning of the coastal areas in mainland China: Spatial heterogeneity, seasonal variation and its influential factors. Ecol. Indic. 2020, 110, 105888. [Google Scholar] [CrossRef]
- Li, S.; Cao, X. Monitoring the modes and phases of global human activity development over 30 years: Evidence from county-level nighttime light. Int. J. Appl. Earth Obs. Geoinf. 2024, 126, 103627. [Google Scholar] [CrossRef]
- Ma, X.; Yan, Q.; Pan, Q.; Chen, X.; Li, G. Identification and Classification of Urban Shrinkage in Northeast China. Land 2023, 12, 1245. [Google Scholar] [CrossRef]
- Yang, Y.; Wu, J.; Wang, Y.; Huang, Q.; He, C. Quantifying spatiotemporal patterns of shrinking cities in urbanizing China: A novel approach based on time-series nighttime light data. Cities 2021, 118, 103346. [Google Scholar] [CrossRef]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Polasky, S.; Nelson, E.; Pennington, D.; Johnson, K.A. The impact of land-use change on ecosystem services, biodiversity and returns to landowners: A case study in the state of Minnesota. Environ. Resour. Econ. 2011, 48, 219–242. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.-M.; Li, S.; Zhu, J. Carbon dynamics in the northeastern qinghai–tibetan plateau from 1990 to 2030 using landsat land use/cover change data. Remote Sens. 2020, 12, 528. [Google Scholar] [CrossRef]
- Peng, J.; Chen, X.; Liu, Y.; Lü, H.; Hu, X. Spatial identification of multifunctional landscapes and associated influencing factors in the Beijing-Tianjin-Hebei region, China. Appl. Geogr. 2016, 74, 170–181. [Google Scholar] [CrossRef]
- Ma, Z.; Li, C.; Zhang, J. Understanding urban shrinkage from a regional perspective: Case study of Northeast China. J. Urban Plan. Dev. 2020, 146, 05020025. [Google Scholar] [CrossRef]
- Guan, D.; He, X.; Hu, X. Quantitative identification and evolution trend simulation of shrinking cities at the county scale, China. Sustain. Cities Soc. 2021, 65, 102611. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–18 August 2016; pp. 785–794. [Google Scholar]
- Shapley, L.S. A value for n-person games. In Contributions to the Theory of Games II; Kuhn, H., Tucker, A., Eds.; Princeton University Press: Princeton, NJ, USA, 1953. [Google Scholar]
- Park, H.; Park, D.Y. Comparative analysis on predictability of natural ventilation rate based on machine learning algorithms. Build. Environ. 2021, 195, 107744. [Google Scholar] [CrossRef]
- Yang, S.; Bai, Y.; Alatalo, J.M.; Wang, H.; Jiang, B.; Liu, G.; Chen, J. Spatio-temporal changes in water-related ecosystem services provision and trade-offs with food production. J. Clean. Prod. 2021, 286, 125316. [Google Scholar] [CrossRef]
- Gao, J.; Zuo, L.; Liu, W. Environmental determinants impacting the spatial heterogeneity of karst ecosystem services in Southwest China. Land Degrad. Dev. 2021, 32, 1718–1731. [Google Scholar] [CrossRef]
- Yushanjiang, A.; Zhou, W.; Wang, J.; Wang, J. Impact of urbanization on regional ecosystem services—A case study in Guangdong-Hong Kong-Macao Greater Bay Area. Ecol. Indic. 2024, 159, 111633. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, J.; Mao, D.; Wang, Z.; Qiu, Z.; Yan, H. Identifying spatial similarities and mismatches between supply and demand of ecosystem services for sustainable Northeast China. Ecol. Indic. 2022, 134, 108501. [Google Scholar] [CrossRef]
- Pringle, R.M. Upgrading protected areas to conserve wild biodiversity. Nature 2017, 546, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, J.; Gong, J.; Li, S. Human footprint in Tibet: Assessing the spatial layout and effectiveness of nature reserves. Sci. Total Environ. 2018, 621, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Tu, T.; Wang, X.; Long, Y. Spatiotemporal changes of urban vacant land and its distribution patterns in shrinking cities on the globe. Sci. Total Environ. 2024, 947, 174424. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Brandt, M.; Tong, X.; Ciais, P.; Yue, Y.; Xiao, X.; Zhang, W.; Wang, K.; Fensholt, R. A large but transient carbon sink from urbanization and rural depopulation in China. Nat. Sustain. 2022, 5, 321–328. [Google Scholar] [CrossRef]
- Mou, Y.; Song, Y.; Xu, Q.; He, Q.; Hu, A. Influence of urban-growth pattern on air quality in China: A study of 338 cities. Int. J. Environ. Res. Public Health 2018, 15, 1805. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.; Baró, F. Greening the city: Thriving for biodiversity and sustainability. Sci. Total Environ. 2022, 817, 153032. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Liu, H.; Gou, P.; Xu, N. Conflict or Coordination? measuring the relationships between urbanization and vegetation cover in China. Ecol. Indic. 2023, 147, 109993. [Google Scholar] [CrossRef]
- Wei, L.; Zhou, L.; Sun, D.; Yuan, B.; Hu, F. Evaluating the impact of urban expansion on the habitat quality and constructing ecological security patterns: A case study of Jiziwan in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109544. [Google Scholar] [CrossRef]
- Li, M.; Hao, J.; Chen, L.; Gu, T.; Guan, Q.; Chen, A. Decoupling of urban and rural construction land and population change in China at the prefectural level. Resour. Sci 2019, 41, 1897–1910. [Google Scholar] [CrossRef]
- Deng, T.; Wang, D.; Yang, Y.; Yang, H. Shrinking cities in growing China: Did high speed rail further aggravate urban shrinkage? Cities 2019, 86, 210–219. [Google Scholar] [CrossRef]
- Lu, M.; Liang, F.; Xing, J. Navigating urban shrinkage: Spatial influencing factors and strategic priorities for urban spatial performance in Heilongjiang Province, China. Sustain. Cities Soc. 2024, 101, 105200. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, F.; Huang, L.; Peng, K.; Wang, X. Does industrial upgrading promote eco-efficiency?—A panel space estimation based on Chinese evidence. Energy Policy 2021, 154, 112286. [Google Scholar] [CrossRef]
- Delken, E. Happiness in shrinking cities in Germany: A research note. J. Happiness Stud. 2008, 9, 213–218. [Google Scholar] [CrossRef]
- Frazier, A.E.; Bagchi-Sen, S. Developing open space networks in shrinking cities. Appl. Geogr. 2015, 59, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Chang, J.; Li, C.; Gu, S. Ecological restoration and protection of national land space in coal resource-based cities from the perspective of ecological security pattern: A case study in Huaibei City, China. Land 2023, 12, 442. [Google Scholar] [CrossRef]
- He, J.; Shi, X. Detection of social-ecological drivers and impact thresholds of ecological degradation and ecological res-toration in the last three decades. J. Environ. Manag. 2022, 318, 115513. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Chen, Y.; Fang, C. Factors influencing ecosystem services in the Pearl River Delta, China: Spatiotemporal differentiation and varying importance. Resour. Conserv. Recycl. 2021, 168, 105477. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z.; Qian, X. Driving factors of urban shrinkage: Examining the role of local industrial diversity. Cities 2020, 99, 102646. [Google Scholar] [CrossRef]
- Gao, F.; Liao, S.; Wang, Z.; Cai, G.; Feng, L.; Yang, Z.; Chen, W.; Chen, X.; Li, G. Revealing disparities in different types of park visits based on cellphone signaling data in Guangzhou, China. J. Environ. Manag. 2024, 351, 119969. [Google Scholar] [CrossRef]
- Döringer, S.; Uchiyama, Y.; Penker, M.; Kohsaka, R. A meta-analysis of shrinking cities in Europe and Japan. Towards an integrative research agenda. Eur. Plan. Stud. 2020, 28, 1693–1712. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, Y.; Chen, P.; Zhang, M. The impact of residents’ perceptions of urban shrinkage on overall life satisfaction—The case of Yichun, China. Cities 2023, 141, 104445. [Google Scholar] [CrossRef]
- Amado, C.A.F.; Barreira, A.P.; Santos, S.P.; Guimarães, M.H. Comparing the quality of life of cities that gained and lost population: An assessment with DEA and the Malmquist index. Pap. Reg. Sci. 2019, 98, 2075–2098. [Google Scholar] [CrossRef]
- Qiao, W.; Huang, X. The impact of land urbanization on ecosystem health in the Yangtze River Delta urban agglomerations, China. Cities 2022, 130, 103981. [Google Scholar] [CrossRef]
- Mabon, L.; Shih, W.-Y. Management of sustainability transitions through planning in shrinking resource city contexts: An evaluation of Yubari City, Japan. J. Environ. Policy Plan. 2018, 20, 482–498. [Google Scholar] [CrossRef]
Data Type | Data Name | Data Resource | Resolution |
---|---|---|---|
Natural Environment Data | Land-Use Data (GLC_FCS30 Dataset) | http://aircas.ac.cn/ (Accessed on 10 March 2024) | 30 m × 30 m |
Digital Elevation Model (DEM) | https://www.resdc.cn/ (Accessed on 12 March 2024) | 30 m × 30 m | |
Precipitation Data | https://www.geodata.cn/ (Accessed on 15 March 2024) | 1 km × 1 km | |
Evapotranspiration Data | https://www.geodata.cn/ (Accessed on 15 March 2024) | 1 km × 1 km | |
Normalized Difference Vegetation Index (NDVI) | https://www.nesdc.org.cn/ (Accessed on 11 March 2024) | 30 m × 30 m | |
Net Primary Productivity (NPP) | https://www.usgs.gov/ (Accessed on 11 March 2024) | 500 m × 500 m | |
Soil Attribute Data | https://gaez.fao.org/pages/hwsd (Accessed on 20 March 2024) | 1 km × 1 km | |
Watershed Data | https://hydrosheds.org/ (Accessed on 15 March 2024) | Vector file | |
Socioeconomic Data | Administrative Division Data | https://www.resdc.cn/ (Accessed on 5 March 2024) | Vector file |
Population Density Data | https://www.worldpop.org/ (Accessed on 10 March 2024) | 1 km × 1 km | |
Other Statistical Data | ①China urban statistical yearbooks (2000–2021) ②The statistical yearbooks of Heilongjiang, Jilin, and Liaoning (2000–2021) ③The sixth and seventh population census bulletins of China (http://www.stats.gov.cn/) (Accessed on 3 March 2024) | Non-spatial data; the Arcgis10.2 was used for spatialization | |
Nighttime Light Data (NTL) | A Prolonged Artificial Nighttime-light Dataset of China (1984–2020) (http://www.geodata.cn) (Accessed on 13 March 2024) | 500 m × 500 m |
β | Z | Value | Classification Meaning |
---|---|---|---|
β > 0 | 2.58 < Z | 4 | Extremely significant increase |
1.96 < Z ≤ 2.58 | 3 | Significant increase | |
1.65 < Z ≤ 1.96 | 2 | Slightly significant increase | |
Z ≤ 1.65 | 1 | Not significantly increased | |
β = 0 | Z = 0 | 0 | No changes |
β < 0 | Z ≤ 1.65 | −1 | Not significantly reduced |
1.65 < Z ≤ 1.96 | −2 | Slightly significant reduction | |
1.96 < Z ≤ 2.58 | −3 | Significant reduction | |
2.58 < Z | −4 | Extremely significant reduction |
Characterization Dimension | Indicator Content | Indicator Number and Abbreviation | Factor Index |
---|---|---|---|
Population | Population Size | X1 (NP) | Number of Permanent Population (Ten Thousand Persons) |
Population Growth | X2 (NGR) | Natural Growth Rate (%) | |
Population Distribution | X3 (DP) | Population Density (Per Square Kilometer) | |
Economic | Industrial Structure | X4 (PSI) | Proportion of Secondary Industry (%) |
X5 (PTI) | Proportion of Tertiary Industry (%) | ||
Economic Development | X6 (GDP) | Per Capita GDP (Ten Thousand Yuan) | |
X7 (CFR) | Per Capita Fiscal Revenue (Ten Thousand Yuan) | ||
X8 (TGDP) | Total GDP (Ten-Thousand Yuan) | ||
Spatial | Expansion Status | X9 (UBA) | Urban Built-up Area Proportion Percentage (%) |
Infrastructure Development | X10 (RA) | Per Capita Urban Road Area (km2) | |
Environmental Quality | X11 (GG) | Built-up Area Green Coverage (%) | |
Social | Social Security Capacity | X12 (CFE) | Per Capita Fiscal Expenditure (Ten Thousand Yuan) |
Consumption Levels | X13 (RSCG) | Total Retail Sales of Consumer Goods (Ten Thousand Yuan) | |
Social Stability | X14 (UPR) | Unemployment Rate (%) |
Continuous Shrinkage | Intermittent Shrinkage | Continuous Development | |||||||
---|---|---|---|---|---|---|---|---|---|
Evaluation Index | R2 | RMSE | MAE | R2 | RMSE | MAE | R2 | RMSE | MAE |
OLS | 0.6997 | 0.1507 | 0.1137 | 0.6545 | 0.1532 | 0.1142 | 0.6344 | 0.1433 | 0.1041 |
RF | 0.7336 | 0.1370 | 0.1032 | 0.7411 | 0.1327 | 0.0984 | 0.7423 | 0.1214 | 0.0865 |
XGBoost | 0.725 | 0.1419 | 0.1047 | 0.7253 | 0.1380 | 0.1023 | 0.7311 | 0.1238 | 0.0884 |
Shrinkage Types | Encoding Composition |
---|---|
Continuous development (CDC) | 444 (Changchun; Dalian; Harbin; Shenyang) |
434 (Panjin; Liaoyang) | |
433 (Anshan) | |
333 (Jilin) | |
Intermittent shrinkage (ISC) | 343 (Daqing) |
332 (Chaoyang; Dandong; Jinzhou; Yingkou; Songyuan) | |
232 (Fuxin; Huludao; Liaoyuan) | |
132 (Baicheng) | |
131 (Qiqihaer) | |
121 (Heihe; Baishan) | |
Continuous shrinkage (CSC) | 222 (Benxi; Siping) |
221 (Tonghua; Tieling) | |
211 (Fushun; Jiamusi) | |
111 (Hegang; Jixi; Mudanjiang; Qitaihel; Shuangyashan; Suihua; Yichun) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Chang, J.; Wang, Z.; Li, Z.; Liu, X.; Chen, Y.; Wei, Z.; Sun, J. Regional Urban Shrinkage Can Enhance Ecosystem Services—Evidence from China’s Rust Belt. Remote Sens. 2024, 16, 3040. https://doi.org/10.3390/rs16163040
Xu Z, Chang J, Wang Z, Li Z, Liu X, Chen Y, Wei Z, Sun J. Regional Urban Shrinkage Can Enhance Ecosystem Services—Evidence from China’s Rust Belt. Remote Sensing. 2024; 16(16):3040. https://doi.org/10.3390/rs16163040
Chicago/Turabian StyleXu, Ziqi, Jiang Chang, Ziyi Wang, Zixuan Li, Xiaoyi Liu, Yedong Chen, Zhongyin Wei, and Jingyu Sun. 2024. "Regional Urban Shrinkage Can Enhance Ecosystem Services—Evidence from China’s Rust Belt" Remote Sensing 16, no. 16: 3040. https://doi.org/10.3390/rs16163040
APA StyleXu, Z., Chang, J., Wang, Z., Li, Z., Liu, X., Chen, Y., Wei, Z., & Sun, J. (2024). Regional Urban Shrinkage Can Enhance Ecosystem Services—Evidence from China’s Rust Belt. Remote Sensing, 16(16), 3040. https://doi.org/10.3390/rs16163040