The 2024 Mw 7.1 Wushi Earthquake: A Thrust and Strike-Slip Event Unveiling the Seismic Mechanisms of the South Tian Shan’s Thick-Skin Tectonics
Abstract
:1. Introduction
2. InSAR Data and Processing
2.1. InSAR Deformation of the Mw7.1 Earthquake
2.2. InSAR Deformation of Aftershock
3. Fault Geometry and Slip Exploration
3.1. Fault Parameters Setting of the Mw7.1 Earthquake
3.2. Slip Distribution Inversion of the Mw7.1 Earthquake
3.3. Seismic Structures and Slip Distribution Inversion of the Aftershocks
4. Discussion
4.1. Seismogenic Structure of the Mw7.1 Wushi Earthquake
4.2. Deformation and Potential Seismic Structures of Aftershock
4.3. The Triggering Relationship of Main–Aftershocks
4.4. Seismicity of the Maidan Fault
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yin, A.; Nie, S.; Craig, P.; Harrison, T.M.; Ryerson, F.J.; Xianglin, Q.; Geng, Y. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 1998, 17, 1–27. [Google Scholar] [CrossRef]
- Zhang, P. Late Cenozoic tectonic deformation in the Tianshan Mountain and its foreland basins. Chin. Sci. Bull 2004, 49, 311–313. [Google Scholar] [CrossRef]
- Zheng, W.J.; Zhang, P.Z.; Yuan, D.Y.; Wu, C.Y.; Li, Z.G.; Ge, W.P.; Wang, W.T.; Wang, Y. Basic characteristics of active tectonics and associated geodynamic processes in continental China. J. Geomech. 2019, 25, 699–721. (In Chinese) [Google Scholar]
- Fu, B.H.; Jia, Y.Y. Late Cenozoic tectono-gomorphology and seismicities of the Wushi sthrust-and-fold belt, southern Tian Shan. Chin. J. Geol. 2010, 45, 917–929. [Google Scholar]
- Zhang, B.X.; Qian, L.; Li, T.; Chen, J.; Xu, J.H.; Yao, Y.; Fang, L.H.; Xie, C.; Chen, J.B.; Liu, G.S.; et al. Geological disasters and surface ruptures of January 23, 2024 MS7.1 wushi earthquake, Xinjiang, China. Seismol. Geol. 2024, 46, 220–234. (In Chinese) [Google Scholar]
- Hamiel, Y.; Fialko, Y. Structure and mechanical properties of faults in the North Anatolian Fault system from InSAR observations of coseismic deformation due to the 1999 Izmit (Turkey) earthquake. J. Geophys. Res. Solid Earth 2007, 112, B07412. [Google Scholar] [CrossRef]
- Shen, Z.K.; Sun, J.; Zhang, P.; Wan, Y.; Wang, M.; Bürgmann, R.; Zeng, Y.; Gan, W.; Liao, H.; Wang, Q. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat. Geosci. 2009, 2, 718–724. [Google Scholar] [CrossRef]
- Wang, H.; Xu, C.; Ge, L. Coseismic deformation and slip distribution of the 1997 Mw7.5 Manyi, Tibet, earthquake from InSAR measurements. J. Geodyn. 2007, 44, 200–212. [Google Scholar] [CrossRef]
- Wang, M.; Shen, Z.K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018774. [Google Scholar] [CrossRef]
- Li, J.; Yao, Y.; Li, R.; Yusan, S.; Li, G.; Freymueller, J.T.; Wang, Q. Present-Day Strike-Slip Faulting and Thrusting of the Kepingtage Fold-and-Thrust Belt in Southern Tianshan: Constraints from GPS Observations. Geophys. Res. Lett. 2022, 49, e2022GL099105. [Google Scholar] [CrossRef]
- Wu, C.; Zheng, W.; Zhang, P.; Zhang, Z.; Jia, Q.; Yu, J.; Zhang, H.; Yao, Y.; Liu, J.; Han, G.; et al. Oblique Thrust of the Maidan Fault and Late Quaternary Tectonic Deformation in the Southwestern Tian Shan, Northwestern China. Tectonics 2019, 38, 2625–2645. [Google Scholar] [CrossRef]
- Allen, M.B.; Vincent, S.J.; Wheeler, P.J. Late Cenozoic tectonics of the Kepingtage thrust zone: Interactions of the Tien Shan and Tarim Basin, northwest China. Tectonics 1999, 18, 639–654. [Google Scholar] [CrossRef]
- Avouac, J.-P. From Geodetic Imaging of Seismic and Aseismic Fault Slip to Dynamic Modeling of the Seismic Cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 233–271. [Google Scholar] [CrossRef]
- Wegnüller, U.; Werner, C.; Strozzi, T.; Wiesmann, A.; Frey, O.; Santoro, M. Sentinel-1 Support in the GAMMA Software. Procedia Comput. Sci. 2016, 100, 1305–1312. [Google Scholar] [CrossRef]
- Werner, C.; Wegmüller, U.; Strozzi, T.; Wiesmann, A. Gamma SAR and interferometric processing software. In Proceedings of the Ers-Envisat Symposium, Gothenburg, Sweden, 16–20 October 2000. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Okada, Y. Internal deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1992, 82, 1018–1040. [Google Scholar] [CrossRef]
- Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar] [CrossRef]
- Sun, J.B.; Xu, X.W.; Shen, Z.K.; Shi, Y.L.; Liang, F. Parameter inversion of the 1997 Mani earthquake from INSAR co-seismic deformation field based on linear elastic dislocation model-I. Unif. Slip Inversion. Chin. J. Geophys. 2007, 50, 1097–1110. (In Chinese) [Google Scholar]
- Bagnardi, M.; Hooper, A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochem. Geophys. Geosystems 2018, 19, 2194–2211. [Google Scholar] [CrossRef]
- Zheng, M.; Peng, G.-X.; Lei, G.-L.; Guo, H.-Q.; Huang, S.-Y.; Wu, C.; Li, Y.-J. Structural pattern and its control on hydrocarbon accumulations in Wushi Sag, Kuche Depression, Tarim Basin. Pet. Explor. Dev. 2008, 35, 444–451. [Google Scholar] [CrossRef]
- Wang, R.; Diao, F.; Hoechner, A. SDM-A geodetic inversion code incorporating with layered crust structure and curved fault geometry. EGU Gen. Assem. Conf. Abstr. 2013, 15, EGU2013-2411-1. [Google Scholar]
- Hong, S.; Liu, M.; Liu, T.; Dong, Y.; Chen, L.; Meng, G.; Xu, Y. Fault Source Model and Stress Changes of the 2021 Mw 7.4 Maduo Earthquake, China, Constrained by InSAR and GPS Measurements. Bull. Seismol. Soc. Am. 2022, 112, 1284–1296. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Mishra, O.P. Co-seismic deformation and slip distribution of 5 April 2017 Mashhad, Iran earthquake using InSAR sentinel-1A image: Implication to source characterization and future seismogenesis. Nat. Hazards 2021, 105, 3039–3057. [Google Scholar] [CrossRef]
- Shen, W.; Li, Y.; Zhang, J. Hybrid stochastic ground motion modeling of the Mw 7.8 Gorkha, Nepal earthquake of 2015 based on InSAR inversion. J. Asian Earth Sci. 2017, 141, 268–278. [Google Scholar] [CrossRef]
- Wang, Q.H.; Yang, W.; Zhou, H.; Miao, W.D. The stratigraphic system and structural characteristics of the western subsag of Wushi Sag, NW Tarim Basin. Chin. J. Geol. 2024, 59, 271–287. [Google Scholar]
- Zheng, M.; Lei, G.L.; Huang, S.Y.; Wu, C.; Luo, S.; Li, Y. Features of fault structure in southern margin of west segment of the South Tianshan, and its control to evolution of the Wushi Sag. Chin. J. Geol. 2007, 42, 639–655. (In Chinese) [Google Scholar]
- King, G.C.P.; Stein, R.S.; Lin, J. Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am. 1994, 84, 935–953. [Google Scholar]
- Wan, Y.G.; Shen, Z.K. Static Coulomb stress changes on faults caused by the 2008 MW7.9 Wenchuan, China earthquake. Tectonophysics 2010, 491, 105–118. [Google Scholar] [CrossRef]
- Xiong, W.; Tan, K.; Liu, G.; Qiao, X.J.; Nie, Z.S. Coseismic and postseismic Coulomb stress changes on surrounding major faults caused by the 2015 Nepal MW7.9 earthquake. Chin. J. Geophys. 2015, 58, 4305–4316. (In Chinese) [Google Scholar]
- Toda, S.; Stein, R.S.; Richards-Dinger, K.; Bozkurt, S. Forecasting the evolution of seismicity in southern California: Animations built on earthquake stress transfer. J. Geophys. Res. 2005, 110, B05S16. [Google Scholar] [CrossRef]
- Lin, J.; Stein, R.S. Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J. Geophys. Res. 2004, 109, B02303. [Google Scholar] [CrossRef]
- Shi, Y.L.; Cao, J.L. Some aspects in static stress change calculation-case study on Wenchuan earthquake. Chin. J. Geophys. 2010, 53, 102–110. (In Chinese) [Google Scholar]
- Fu, B.; Lin, A.; Kano, K.-I.; Maruyama, T.; Guo, J. Quaternary folding of the eastern Tian Shan, northwest China. Tectonophysics 2003, 369, 79–101. [Google Scholar] [CrossRef]
- Lu, H.; Li, B.; Wu, D.; Zhao, J.; Zheng, X.; Xiong, J.; Li, Y. Spatiotemporal patterns of the Late Quaternary deformation across the northern Chinese Tian Shan foreland. Earth-Sci. Rev. 2019, 194, 19–37. [Google Scholar] [CrossRef]
- Burchfiel, B.C.; Brown, E.T.; Qidong, D.; Xianyue, F.; Jun, L.; Molnar, P.; Jianbang, S.; Zhangming, W.; Huichuan, Y. Crustal Shortening on the Margins of the Tien Shan, Xinjiang, China. Int. Geol. Rev. 1999, 41, 665–700. [Google Scholar] [CrossRef]
- Yang, S.; Li, J.; Wang, Q. Study on the present deformation and fault activity of Tianshan by GPS. J. Sci. Sin. Terrae 2008, 38, 872–880. (In Chinese) [Google Scholar]
- Li, Y.; Liu, M.; Hao, M.; Zhu, L.; Cui, D.; Wang, Q. Active crustal deformation in the Tian Shan region, central Asia. Tectonophysics 2021, 811, 228868. [Google Scholar] [CrossRef]
- Qiu, J.; Ji, L.; Zhu, L.; Wang, Q. Present-Day Tectonic Deformation Partitioning Across South Tianshan from Satellite Geodetic Imaging. Front. Earth Sci. 2022, 9, 793890. [Google Scholar] [CrossRef]
- Chen, J.; Ding, G.Y.; Burbank, D.W.; Scharer, K.; Rubin, C.; Sobel, E.; Qu, G.S.; Shen, J.; Yin, J.H.; Zhao, R.B. Late Cenozoic tectonics and seismicity in the southwestern Tian Shan, China. Earthq. Res. China 2001, 17, 134–155. (In Chinese) [Google Scholar]
- Yang, H.; Li, Y.; Shi, J.; Xiao, A.; Huang, S.; Wang, H.; Wang, X.; Zhao, Y.; Liu, Y. Tectonic characteristics of the Late Cenozoic South Tianshan fold-thrust belt. Quat. Sci. 2010, 30, 1030–1043. (In Chinese) [Google Scholar]
Agency | Location | Magnitude (Mw) | Depth (km) | Nodal Plane 1 Strike, Dip, Rake | Nodal Plane 2 Strike, Dip, Rake |
---|---|---|---|---|---|
GCMT * | 41.19°N 78.57°E | 7.0 | 14.0 | 236°, 48°, 47° | 110°, 57°, 127° |
NEIC | 41.269°N 78.649°E | 7.0 | 13.0 | 235°, 45°, 42° | 113°, 62°, 126° |
IPGP | 41.294°N 78.594°E | 7.1 | 22 | 234°, 50°, 51° | 105°, 53°, 127° |
CEA-IGP | 41.2938°N 78.5937°E | 7.1 | 27.4 | 250°, 42°, 59° | 109°, 55°, 115° |
GFZ | 41.28°N 78.73°E | 7.01 | 15 | 251°, 38°, 73° | 93°, 54°, 103° |
Direction | Track No. | Detection Time | Time Interval (Day) | Spatial Baseline (m) | Event | |
---|---|---|---|---|---|---|
Master | Slave | |||||
Asc | 56 | 14 January 2024 | 25 January 2024 | 12 | −35.9 | Main shock |
Des | 34 | 13 January 2024 | 24 January 2024 | 12 | −1.4 | |
Asc | 56 | 25 January 2024 | 7 February 2024 | 12 | 106.8 | Aftershock |
Des | 34 | 24 January 2024 | 6 February 2024 | 12 | −92.2 |
Model Param. | Optimal | Mean | Median | 2.5% | 97.5% |
---|---|---|---|---|---|
Fault Length | 83,783.7 | 83,721.4 | 83,783.4 | 82,694 | 84,815.7 |
Fault Width | 13,179 | 13,195.5 | 13,244.1 | 12,260.3 | 13,916.2 |
Fault Depth | 18,221.6 | 18,190.1 | 18,211.9 | 17,733.1 | 18,552.4 |
Fault Dip * | −59.8794 | −59.8732 | −59.8719 | −60.4573 | −59.2678 |
Fault Strike * | 49.1688 | 49.1993 | 49.1971 | 48.9167 | 49.4954 |
Fault StrSlip | −1.58574 | −1.58309 | −1.58101 | −1.65472 | −1.51888 |
Fault DipSlip | −1.94319 | −1.93905 | −1.93353 | −2.02938 | −1.86268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, J.; Sun, J.; Ji, L. The 2024 Mw 7.1 Wushi Earthquake: A Thrust and Strike-Slip Event Unveiling the Seismic Mechanisms of the South Tian Shan’s Thick-Skin Tectonics. Remote Sens. 2024, 16, 2937. https://doi.org/10.3390/rs16162937
Qiu J, Sun J, Ji L. The 2024 Mw 7.1 Wushi Earthquake: A Thrust and Strike-Slip Event Unveiling the Seismic Mechanisms of the South Tian Shan’s Thick-Skin Tectonics. Remote Sensing. 2024; 16(16):2937. https://doi.org/10.3390/rs16162937
Chicago/Turabian StyleQiu, Jiangtao, Jianbao Sun, and Lingyun Ji. 2024. "The 2024 Mw 7.1 Wushi Earthquake: A Thrust and Strike-Slip Event Unveiling the Seismic Mechanisms of the South Tian Shan’s Thick-Skin Tectonics" Remote Sensing 16, no. 16: 2937. https://doi.org/10.3390/rs16162937
APA StyleQiu, J., Sun, J., & Ji, L. (2024). The 2024 Mw 7.1 Wushi Earthquake: A Thrust and Strike-Slip Event Unveiling the Seismic Mechanisms of the South Tian Shan’s Thick-Skin Tectonics. Remote Sensing, 16(16), 2937. https://doi.org/10.3390/rs16162937