Exploring the Green Tide Transport Mechanisms and Evaluating Leeway Coefficient Estimation via Moderate-Resolution Geostationary Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Acquisition and Processing
2.2.1. Green Tide Distribution Extraction
2.2.2. Green Tide Drift Velocity Extraction
2.3. Dynamic Factor Data
2.4. Leeway Model
3. Results
3.1. Characteristics of Green Tide Transport at Various Time Intervals
3.2. Analysis of Driving Forces in Green Tide Drift Transport
3.3. Estimation of Leeway Coefficient
4. Discussion
4.1. Characteristics and Driving Forces of Green Tide Transport across Different Time Intervals
4.2. Leeway Coefficient Error Assessment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, C.; Qi, L.; Hu, L.; Cui, T.; Xing, Q.; He, M.; Wang, N.; Xiao, Y.; Sun, D.; Lu, Y.; et al. Mapping Ulva prolifera green tides from space: A revisit on algorithm design and data products. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103173. [Google Scholar] [CrossRef]
- Liu, D.; Keesing, J.K.; He, P.; Wang, Z.; Shi, Y.; Wang, Y. The world’s largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuar. Coast. Shelf Sci. 2013, 129, 2–10. [Google Scholar] [CrossRef]
- Zhang, Y.; He, P.; Li, H.; Li, G.; Liu, J.; Jiao, F.; Zhang, J.; Huo, Y.; Shi, X.; Sun, R.; et al. Ulva prolifera green-tide outbreaks and their environmental impact in the Yellow Sea, China. Natl. Sci. Rev. 2019, 6, 825–838. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Y.; Tang, H.; Shi, X.; Rivkin, R.B.; Legendre, L. Spatiotemporal variations of inorganic nutrients along the Jiangsu coast, China, and the occurrence of macroalgal blooms (green tides) in the southern Yellow Sea. Harmful Algae 2017, 63, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Tosi, L.; Braga, F.; Gao, X.; Gao, M. Interpreting the progressive eutrophication behind the world’s largest macroalgal blooms with water quality and ocean color data. Nat. Hazards 2015, 78, 7–21. [Google Scholar] [CrossRef]
- Xia, Z.; Yuan, H.; Liu, J.; Sun, Y.; Tong, Y.; Zhao, S.; Xia, J.; Li, S.; Hu, M.; Cao, J.; et al. A review of physical, chemical, and biological green tide prevention methods in the Southern Yellow Sea. Mar. Pollut. Bull. 2022, 180, 113772. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiao, J.; Yuan, C.; Miao, X.; Fan, S.; Fu, M.; Xia, T.; Zhang, X. The drifting and spreading mechanism of floating Ulva mass in the waterways of Subei shoal, the Yellow Sea of China–Application for abating the world’s largest green tides. Mar. Pollut. Bull. 2023, 190, 114789. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, M.; Gao, Z. A novel index to detect green-tide using UAV-based RGB imagery. Estuar. Coast. Shelf Sci. 2022, 245, 106943. [Google Scholar] [CrossRef]
- Li, D.; Gao, Z.; Wang, Z. Analysis of the reasons for the outbreak of Yellow Sea green tide in 2021 based on long-term multi-source data. Mar. Environ. Res. 2022, 178, 105649. [Google Scholar] [CrossRef]
- Qi, L.; Wang, M.; Hu, C.; Holt, B. On the capacity of Sentinel-1 synthetic aperture radar in detecting floating macroalgae and other floating matters. Remote Sens. Environ. 2022, 280, 113188. [Google Scholar] [CrossRef]
- Xu, S.; Yu, T.; Xu, J.; Pan, X.; Shao, W.; Zuo, J.; Yu, Y. Monitoring and Forecasting Green Tide in the Yellow Sea Using Satellite Imagery. Remote Sens. 2023, 15, 2196. [Google Scholar] [CrossRef]
- Cui, B.; Liu, M.; Chen, R.; Zhang, H.; Zhang, X. Anisotropic Green Tide Patch Information Extraction Based on Deformable Convolution. Remote Sens. 2024, 16, 1162. [Google Scholar] [CrossRef]
- Hu, L.; Hu, C.; HE, M. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sens. Environ. 2017, 192, 217–227. [Google Scholar] [CrossRef]
- Tian, W.; Wang, J.; Zhang, F.; Liu, X.; Yang, J.; Yuan, J.; Mi, X.; Shao, Y. The detection of green tide biomass by remote sensing images and in situ measurement in the Yellow Sea of China. Remote Sens. 2023, 15, 3625. [Google Scholar] [CrossRef]
- Xing, Q.; Wu, L.; Tian, L.; Cui, T.; Li, L.; Kong, F.; Gao, X.; Wu, M. Remote sensing of early-stage green tide in the Yellow Sea for floating-macroalgae collecting campaign. Mar. Pollut. Bull. 2018, 133, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.; Cheng, P.; Wang, M.; Hu, C.; Xie, Y.; Mao, K. Where does floating Sargassum in the East China Sea come from? Harmful Algae 2023, 129, 102523. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wu, M.; Sun, X.; Zhao, D.; Xing, Q.; Liang, F. The inter-annual drift and driven force of Ulva prolifera bloom in the southern Yellow Sea. Oceanol. Limn. Sin. 2018, 49, 1084–1093. [Google Scholar] [CrossRef]
- Keesing, J.K.; Liu, D.; Fearns, P.; Garcia, R. Inter-and intra-annual patterns of Ulva prolifera green tides in the Yellow Sea during 2007–2009, their origin and relationship to the expansion of coastal seaweed aquaculture in China. Mar. Pollut. Bull. 2011, 62, 1169–1182. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Pang, I.C.; Moon, I.J.; Ryu, J.H. On physical factors that controlled the massive green tide occurrence along the southern coast of the Shandong Peninsula in 2008: A numerical study using a particle-tracking experiment. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, J.; Cui, T.; Song, P. Extraction of the green tide drift velocity in the Yellow Sea based on GF-4. Acta Oceanol. Sin. 2018, 40, 29–38. [Google Scholar] [CrossRef]
- Podlejski, W.; Berline, L.; Nerini, D.; Doglioli, A.; Lett, C. A new Sargassum drift model derived from features tracking in MODIS images. Mar. Pollut. Bull. 2023, 188, 114629. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xing, Q.; Ding, J.; Liu, J.; Zheng, X.; Wu, L.; Li, L.; Lu, Y. High-resolution remote sensing of the transportation of floating macroalgae: Case studies with the Ulva prolifera green tide. Natl. Remote Sens. Bull. 2023, 27, 187–196. [Google Scholar] [CrossRef]
- Ciappa, A.; Pietranera, L.; Coletta, A.; Jiang, X. Surface transport detected by pairs of COSMO-SkyMed ScanSAR images in the Qingdao region (Yellow Sea) during a macro-algal bloom in July 2008. J. Mar. Syst. 2010, 80, 135–142. [Google Scholar] [CrossRef]
- Ji, M.; Zhao, C.; Dou, X.; Wang, C.; Zhou, D.; Zhu, J. Identification and assessment of the drift velocity of green tides using the maximum cross-correlation method in the Yellow Sea. Mar. Pollut. Bull. 2023, 194, 115420. [Google Scholar] [CrossRef]
- Jiang, X.; Gao, Z.; Wu, X.; Wang, Y.; Ning, J. Estimation and analysis of the green-tide drift velocity using ship-borne UAV. Acta Oceanol. Sin. 2021, 43, 96–105. [Google Scholar] [CrossRef]
- Son, Y.B.; Choi, B.J.; Kim, Y.H.; Park, Y.G. Tracing floating green algae blooms in the Yellow Sea and the East China Sea using GOCI satellite data and Lagrangian transport simulations. Remote Sens. Environ. 2015, 156, 21–33. [Google Scholar] [CrossRef]
- Putman, N.F.; Goni, G.J.; Gramer, L.J.; Hu, C.; Johns, E.M.; Trinanes, J.; Wang, M. Simulating transport pathways of pelagic Sargassum from the Equatorial Atlantic into the Caribbean Sea. Prog. Oceanogr. 2018, 165, 205–214. [Google Scholar] [CrossRef]
- Zhou, F.; Ge, J.; Liu, D.; Ding, P.; Chen, C.; Wei, X. The Lagrangian-based Floating Macroalgal Growth and Drift Model (FMGDM v1.0): Application to the Yellow Sea green tide. Geosci. Model Dev. 2021, 14, 6049–6070. [Google Scholar] [CrossRef]
- Chen, S.; Jiang, L.; Cheng, X.; Liao, G.; Gerkema, T. A physical perspective of recurrent water quality degradation: A case study in the Jiangsu coastal waters, China. J. Geophys. Res. Ocean. 2023, 128, e2022JC019607. [Google Scholar] [CrossRef]
- Fang, G. Tide and tidal current charts for the marginal seas adjacent to China. Chin. J. Oceanol. Limnol. 1986, 4, 1–16. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, T. An evolving marine environment and its driving forces of algal blooms in the Southern Yellow Sea of China. Mar. Environ. Res. 2022, 178, 105635. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Su, R.; Shi, X.; Zhang, C.; Yin, H.; Zhou, Y.; Wang, G. Role of nutrients in the development of floating green tides in the Southern Yellow Sea, China, in 2017. Mar. Pollut. Bull. 2020, 156, 111197. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Wu, M.; Zheng, L.; Liu, J.; Liu, L.; Zhu, S.; Liu, S.; Liu, L. Multi-Factors Synthetically Contribute to Ulva prolifera Outbreaks in the South Yellow Sea of China. Remote Sens. 2023, 15, 5151. [Google Scholar] [CrossRef]
- Du, C.G.; Li, Y.M.; Wang, Q.; Liu, G.; Zheng, Z.B.; Mu, M.; Li, Y. Tempo-spatial dynamics of water quality and its response to river flow in estuary of taihu lake based on GOCI imagery. Environ. Sci. Pollut. Res. 2017, 24, 28079–28101. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Shao, J.; Yan, C.; Zhang, J.; Qiao, Y.; Pan, Y.; Yuan, J.; Dong, Y.; Yu, B. Near-ultraviolet to near-infrared band thresholds cloud detection algorithm for TANSAT-CAPI. Remote Sens. 2021, 13, 1906. [Google Scholar] [CrossRef]
- Yang, H.; Arnone, R.; Jolliff, J. Estimating advective near-surface currents from ocean color satellite images. Remote Sens. Environ. 2015, 158, 1–14. [Google Scholar] [CrossRef]
- Cui, T.; Zhang, J.; Sun, L.; Jia, Y.; Zhao, W.; Wang, Z.; Meng, J. Satellite monitoring of massive green macroalgae bloom (GMB): Imaging ability comparison of multi-source data and drifting velocity estimation. Int. J. Remote Sens. 2012, 33, 5513–5527. [Google Scholar] [CrossRef]
- Hu, C. A novel ocean color index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Xing, Q.; Hu, C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Qi, L.; Hu, C.; Barnes, B.B.; Lapointe, B.E.; Chen, Y.; Xie, Y.; Wang, M. Climate and anthropogenic controls of seaweed expansions in the East China Sea and Yellow Sea. Geophys. Res. Lett. 2022, 49, e2022GL098185. [Google Scholar] [CrossRef]
- Garcia, R.A.; Fearns, P.; Keesing, J.K.; Liu, D. Quantification of floating macroalgae blooms using the scaled algae index. J. Geophys. Res. Ocean. 2013, 118, 26–42. [Google Scholar] [CrossRef]
- Jin, S.; Liu, Y.; Sun, C.; Wei, X.; Li, H.; Han, Z. A study of the environmental factors influencing the growth phases of Ulva prolifera in the southern Yellow Sea, China. Mar. Pollut. Bull. 2018, 135, 1016–1025. [Google Scholar] [CrossRef]
- Ciappa, A.; Pietranera, L.; Battazza, F. Perito Moreno Glacier (Argentina) flow estimation by COSMO SkyMed sequence of high-resolution SAR-X imagery. Remote Sens. Environ. 2010, 114, 2088–2096. [Google Scholar] [CrossRef]
- Dobler, D.; Maes, C.; Martinez, E.; Rahmania, R.; Gautama, B.G.; Farhan, A.R.; Dounias, E. On the fate of floating marine debris carried to the sea through the main rivers of Indonesia. J. Mar. Sci. Eng. 2022, 10, 1009. [Google Scholar] [CrossRef]
- Geng, S.; Shi, X.; Yue, X. Applicability analysis of the sea surface pressure and wind speed of ERA5 reanalysis data in the Bohai Sea and the Northern Huanghai Seas. Mar. Sci. Bull. 2022, 24, 1–16. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Xu, J.; Yao, Y. A comparative study on the applicability of ERA-Interim and ERA5 reanalysis wind data in the coastal waters of China. Mar. Sci. Bull. 2023, 42, 260–271. [Google Scholar] [CrossRef]
- Dagestad, K.-F.; Röhrs, J. Prediction of ocean surface trajectories using satellite derived vs. modeled ocean currents. Remote Sens. Environ. 2019, 223, 130–142. [Google Scholar] [CrossRef]
- Wu, J.; Cheng, L.; Chu, S. Modeling the leeway drift characteristics of persons-in-water at a sea-area scale in the seas of China. Ocean Eng. 2023, 270, 113444. [Google Scholar] [CrossRef]
- Jones, C.E.; Dagestad, K.-F.; Breivik, Ø.; Holt, B.; Röhrs, J.; Christensen, K.H.; Espeseth, M.; Brekke, C.; Skrunes, S. Measurement and Modeling of Oil Slick Transport. J. Geophys. Res. Ocean. 2016, 121, 7759–7775. [Google Scholar] [CrossRef]
- Lee, S.H.; Beardsley, R.C. Influence of stratification on residual tidal currents in the Yellow Sea. J. Geophys. Res. 1999, 104, 15679–15701. [Google Scholar] [CrossRef]
- Choi, J.G.; Kim, D.; Shin, J.; Jang, S.W.; Lippmann, T.C.; Jo, Y.H.; Cho, S.W. New diagnostic sea surface current fields to trace floating algae in the Yellow Sea. Mar. Pollut. Bull. 2023, 195, 115494. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, G.; Soontiens, N.; Davidson, F.; Smith, G.C.; Bernier, N.; Blanken, H.; Schillinger, D.; Marcotte, G.; Röhrs, J.; Dagestad, K.-F.; et al. Evaluating the leeway coefficient of ocean drifters using operational marine environmental prediction systems. J. Atmos. Ocean. Technol. 2020, 37, 1943–1954. [Google Scholar] [CrossRef]
Year | Date |
---|---|
2021 | 4 June, 5 June, 6 June, 7 June, 19 June, 20 June, 22 June, 23 June, 1 July, 9 July, 10 July |
2023 | 3 June, 6 June, 8 June, 9 June, 11 June, 12 June, 13 June, 14 June, 15 June, 22 June, 24 June, 27 June, 5 July, 9 July, 10 July |
Coefficient | 1 h | 3 h | 7 h | 25 h | ||||
---|---|---|---|---|---|---|---|---|
Meridional | Zonal | Meridional | Zonal | Meridional | Zonal | Meridional | Zonal | |
Stokes (%) | 0.38 ± 0.41 | 0.76 ± 0.38 | 0.47 ± 0.40 | 0.77 ± 0.33 | 0.37 ± 0.39 | 0.74 ± 0.42 | 0.88 ± 0.38 | 0.85 ± 0.24 |
Leeway (%) | 2.22 ± 6.25 | 2.45 ± 6.25 | 1.96 ± 3.62 | 2.25 ± 4.42 | 0.86 ± 3.60 | 3.49 ± 3.24 | 1.80 ± 1.31 | 1.80 ± 0.64 |
Sample | 1003 | 873 | 319 | 357 | 151 | 81 | 22 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, M.; Dou, X.; Zhao, C.; Zhu, J. Exploring the Green Tide Transport Mechanisms and Evaluating Leeway Coefficient Estimation via Moderate-Resolution Geostationary Images. Remote Sens. 2024, 16, 2934. https://doi.org/10.3390/rs16162934
Ji M, Dou X, Zhao C, Zhu J. Exploring the Green Tide Transport Mechanisms and Evaluating Leeway Coefficient Estimation via Moderate-Resolution Geostationary Images. Remote Sensing. 2024; 16(16):2934. https://doi.org/10.3390/rs16162934
Chicago/Turabian StyleJi, Menghao, Xin Dou, Chengyi Zhao, and Jianting Zhu. 2024. "Exploring the Green Tide Transport Mechanisms and Evaluating Leeway Coefficient Estimation via Moderate-Resolution Geostationary Images" Remote Sensing 16, no. 16: 2934. https://doi.org/10.3390/rs16162934
APA StyleJi, M., Dou, X., Zhao, C., & Zhu, J. (2024). Exploring the Green Tide Transport Mechanisms and Evaluating Leeway Coefficient Estimation via Moderate-Resolution Geostationary Images. Remote Sensing, 16(16), 2934. https://doi.org/10.3390/rs16162934