Performance of Ground-Based Global Navigation Satellite System Precipitable Water Vapor Retrieval in Beijing with the BeiDou B2b Service
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment Description
2.2. The B2b Real-Time Precise Ephemeris of the BEIDOU and GPS Satellites
2.3. Real-Time PPP for ZTD with BeiDou B2b Ephemeris
2.4. Convert ZTD to PWV
2.5. Radiosonde and ERA5 Reanalysis Data
2.6. The PWV Accuracy Evaluation
3. Results
3.1. Validation Data for the GNSS PWV
3.2. High Tempo-Resolutional PWV with the PPP Solution Based on B2b Service
3.3. Assessment of PWVs Processing with Single BeiDou and Single GPS
3.4. PWV from the BeiDou-GPS Combined Solution
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Emanuel, K.; Raymond, D.; Betts, A.; Bosart, L.; Bretherton, C.; Droegemeier, K.; Farrell, B.; Fritsch, J.M.; Houze, R.; Le Mone, M.; et al. Report of the First Prospectus Development Team of the U.S. Weather Research Program to NOAA and the NSF. Bull. Am. Meteorol. Soc. 1995, 76, 1194–1208. [Google Scholar]
- Weckwerth, T.M.; Parsons, D.B.; Koch, S.E.; Moore, J.A.; LeMone, M.A.; Demoz, B.B.; Flamant, C.; Geerts, B.; Wang, J.; Feltz, W.F. An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights. Bull. Am. Meteorol. Soc. 2004, 85, 253–277. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, Y.; Ma, X.; Yao, W.; Yao, Y.; Li, X. An improved rainfall forecasting model based on GNSS observations. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4891–4900. [Google Scholar] [CrossRef]
- Bevis, M.; Businger, S.; Herring, T.A.; Rocken, C.; Anthes, R.A.; Ware, R.H. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res. Atmos. 1992, 97, 15787–15801. [Google Scholar] [CrossRef]
- Rocken, C.; Van Hove, T.; Johnson, J.; Solheim, F.; Ware, R.; Bevis, M.; Chiswell, S.; Businger, S. GPS/STORMGPS sensing of atmospheric water vapor for meteorology. J. Atmos. Ocean. Technol. 1995, 12, 468–478. [Google Scholar] [CrossRef]
- Wolfe, D.E.; Gutman, S.I. Development of the NOAA/ERL Ground-Based GPS Water Vapor Demonstration Network: Design and initial results. J. Atmos. Ocean. Technol. 2000, 17, 426–440. [Google Scholar] [CrossRef]
- Gendt, G.; Reigber, C.; Dick, G. Near real-time water vapor estimation in a German GPS network-first results from the ground program of the HGF GASP project. Phys. Chem. Earth Part A Solid Earth Geod. 2001, 26, 413–416. [Google Scholar] [CrossRef]
- Cao, Y.; Fang, Z.; Xia, Q. Advances in Ground-based and Space-borne GPS Meteorology. Trans. Atmos. Sci. 2004, 27, 565–572. [Google Scholar]
- Hu, H.; Cao, Y.; Liang, H. Systematic Errors and Their Calibrations for Precipitable Water Vapor of L-Band Radiosonde. Meteor. Mon. 2019, 45, 511–521. [Google Scholar]
- Liang, H.; Zhang, R.; Liu, J.; Sun, Z.; Li, S. Systematic Errors and Their Calibrations for Radiosonde Precipitable Water Vapor on the Tibetan Plateau. Chin. J. Atmos. Sci. 2012, 36, 795–810. (In Chinese) [Google Scholar]
- Ma, B.; Tang, S.; Hu, J. Validation and Application of FY-2H Total Precipitable Water Products in the Belt and Road Region. Meteorol. Mon. 2022, 48, 595–604. [Google Scholar]
- Weiss, J.P.; Steigenberger, P.; Springer, T. Orbit and clock product generation. In Springer Handbook of Global Navigation Satellite Systems; Teunissen, P.J., Montenbruck, O., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise Point Positioning For The Efficient And Robust Analysis Of GPS Data From Large Networks. J. Geophys. Res. 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Lu, J.; Guo, X.; Su, C. Global capabilities of BeiDou navigation satellite system. Satell. Navig. 2020, 1, 3. [Google Scholar] [CrossRef]
- Duan, B.; Hugentobler, U.; Chen, J.; Selmke, I.; Wang, J. Prediction versus real-time orbit determination for GNSS satellites. GPS Solut. 2019, 23, 39. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Ge, M.; Schuh, H. Improving multi-GNSS ultrarapid orbit determination for real-time precise point positioning. J. Geod. 2018, 93, 45–64. [Google Scholar] [CrossRef]
- Li, X.; Yuan, Y.; Zhu, Y.; Huang, J.; Wu, J.; Xiong, Y.; Zhang, X.; Li, X. Precise orbit determination for BDS3 experimental satellites using iGMAS and MGEX tracking networks. J. Geod. 2019, 93, 103–117. [Google Scholar] [CrossRef]
- Cao, X.; Kuang, K.; Ge, Y.; Shen, F.; Zhang, S.; Li, J. An efficient method for undiferenced BDS-2/BDS-3 high-rate clock estimation. GPS Solut. 2022, 26, 66. [Google Scholar] [CrossRef]
- Yang, Y.; Ding, Q.; Gao, W.; Li, J.; Xu, Y.; Sun, B. Principle and performance of BDSBAS and PPP-B2b of BDS-3. Satell Navig. 2022, 3, 5. [Google Scholar] [CrossRef]
- Zeng, T.; Sui, L.; Ruan, R.; Jia, X.; Feng, L. Uncombined precise orbit and clock determination of GPS and BDS-3. Satell Navig. 2020, 1, 19. [Google Scholar] [CrossRef]
- Ge, Y.; Chen, S.; Wu, T.; Fan, C.; Qin, W.; Zhou, F.; Yang, X. An analysis of BDS-3 real-time PPP: Time transfer, positioning, and tropospheric delay retrieval. Measurement 2021, 172, 108871. [Google Scholar] [CrossRef]
- Jiao, G.; Song, S.; Liu, Y.; Su, K.; Cheng, N.; Wang, S. Analysis and assessment of BDS-2 and BDS-3 broadcast ephemeris: Accuracy, the datum of broadcast clocks and its impact on single point positioning. Remote Sens. 2020, 12, 2081. [Google Scholar] [CrossRef]
- Li, Z.; Chen, W.; Ruan, R.; Liu, X. Evaluation of PPP-RTK based on BDS-3/BDS-2/GPS observations: A case study in Europe. GPS Solut. 2020, 24, 38. [Google Scholar] [CrossRef]
- Shi, J.; Ouyang, C.; Huang, Y.; Peng, W. Assessment of BDS-3 global positioning service: Ephemeris, SPP, PPP, RTK, and new signal. GPS Solut. 2020, 24, 81. [Google Scholar] [CrossRef]
- Shi, C.; Wu, X.; Zheng, F.; Wang, X.; Wang, J. Modeling of BDS-2/BDS-3 single-frequency PPP with B1I and B1C signals and positioning performance analysis. Measurement 2021, 178, 109355. [Google Scholar] [CrossRef]
- Ge, Y.; Cao, X.; Shen, F.; Yang, X.; Wang, S. BDS-3/Galileo time and frequency transfer with quad-frequency precise point positioning. Remote Sens. 2021, 13, 2704. [Google Scholar] [CrossRef]
- Guang, W.; Zhang, J.; Yuan, H.; Wu, W.; Dong, S. Analysis on the time transfer performance of BDS-3 signals. Metrologia 2020, 57, 065023. [Google Scholar] [CrossRef]
- Xiao, X.; Shen, F.; Lu, X.; Shen, P.; Ge, Y. Performance of BDS-2/3, GPS, and galileo time transfer with real-time single-frequency precise point positioning. Remote Sens. 2021, 13, 4192. [Google Scholar] [CrossRef]
- Zhang, P.; Tu, R.; Wu, W.; Liu, J.; Wang, X.; Zhang, R. Initial accuracy and reliability of current BDS-3 precise positioning, velocity estimation, and time transfer (PVT). Adv. Space Res. 2019, 65, 1225–1234. [Google Scholar] [CrossRef]
- Malys, S.; Jensen, P.A. Geodetic point positioning with GPS carrier beat phase data from the CASA UNO experiment. Geophys. Res. Lett. 1990, 17, 651–654. [Google Scholar] [CrossRef]
- Cai, Z.; Fang, R.; Hu, B.; Xiong, H. Accuracy evaluation of BeiDou-3 PPP-B2b signal. Glob. Position. Syst. 2023, 48, 64–70. [Google Scholar]
- Saastamoinen, J. Contributions to theory of atmospheric refraction. J. Geod. 1972, 105, 279–298. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. Roy. Meteor. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 Reanalysis Is in Production. ECMWF Newsl. 2016, 147, 7. Available online: https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production (accessed on 1 January 2019).
- Ohtani, R.; Naito, I. Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J. Geophys. Res. 2000, 105, 26917–26929. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, X.; Zhang, S.; Xu, K.; Guo, R. Applicability Analysis of ERA5 Reanalysis Surface Air Temperature Data in China. J. Trop. Meteorol. 2023, 39, 78–88. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, S.; Wang, H. Preliminarily Comparative Study on the Applicability of ERA5 and ERA5-Land Ground Wind Speed Data over China’s Land Region. Clim. Environ. Res. 2024, 29, 36–44. [Google Scholar]
- Liang, H.; Cao, Y.; Wan, X.; Xu, Z.; Wang, H.; Hu, H. Meteorological applications of precipitable water vapor measurements retrieved by the national GNSS network of China. Geod. Geodyn. 2015, 6, 135–142. [Google Scholar] [CrossRef]
- Raftery, A.E.; Gneiting, T.; Balabdaoui, F.; Polakowski, M. Using Bayesian model averaging to calibrate forecast ensembles. Mon. Weather Rev. 2005, 133, 1155–1174. [Google Scholar] [CrossRef]
Observation | Sampling interval | 30 s |
Observation combinations | Ionosphere-free (IF) combination | |
Cut-off elevation angle | 7° | |
Weighting strategies | p = 1, e > 30°; p = 2sin(e), e ≤ 30° | |
Error corrections | Antenna-phase center corrections | igs14.atx |
Ocean tide loading | FES2014b | |
Priori tropospheric correction | VMF3 | |
Parameter estimations | Satellite orbit | Fixed to GBM products with 300 s sampling rate |
Satellite clock offset | Fixed to GBM products with 30 s sampling rate | |
Mapping function | VMF3 | |
ZTD stochastic model | Piece-wise constant (1 h) + random walk () | |
Station coordinates | Daily constants | |
Receiver clock offset | White noise | |
Ambiguity | Fixed to network solutions |
PWV Estimation | Bias/mm | RMSE/mm |
---|---|---|
0.73 | 1.97 | |
0.70 | 1.80 | |
PWV from BeiDou-GPS combined solution | 0.74 | 1.97 |
0.71 | 1.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Cheng, Z.; Liang, J.; Zhao, P.; Cao, Y.; Wang, Y. Performance of Ground-Based Global Navigation Satellite System Precipitable Water Vapor Retrieval in Beijing with the BeiDou B2b Service. Remote Sens. 2024, 16, 2902. https://doi.org/10.3390/rs16162902
Cao Y, Cheng Z, Liang J, Zhao P, Cao Y, Wang Y. Performance of Ground-Based Global Navigation Satellite System Precipitable Water Vapor Retrieval in Beijing with the BeiDou B2b Service. Remote Sensing. 2024; 16(16):2902. https://doi.org/10.3390/rs16162902
Chicago/Turabian StyleCao, Yunchang, Zhenhua Cheng, Jingshu Liang, Panpan Zhao, Yucan Cao, and Yizhu Wang. 2024. "Performance of Ground-Based Global Navigation Satellite System Precipitable Water Vapor Retrieval in Beijing with the BeiDou B2b Service" Remote Sensing 16, no. 16: 2902. https://doi.org/10.3390/rs16162902
APA StyleCao, Y., Cheng, Z., Liang, J., Zhao, P., Cao, Y., & Wang, Y. (2024). Performance of Ground-Based Global Navigation Satellite System Precipitable Water Vapor Retrieval in Beijing with the BeiDou B2b Service. Remote Sensing, 16(16), 2902. https://doi.org/10.3390/rs16162902