Modeling Spatio-Temporal Rainfall Distribution in Beni–Irumu, Democratic Republic of Congo: Insights from CHIRPS and CMIP6 under the SSP5-8.5 Scenario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Processing and Analysis
2.3.1. Downscaling and Bias Correction
2.3.2. GCM Performance in Simulating Rainfall
2.3.3. Spatio-Temporal Rainfall Patterns Analysis
3. Results
3.1. Ensemble Model Accuracy and Performance in Simulating Rainfall Patterns
3.2. Spatio-Temporal Distribution of Rainfall under Different Periods
3.2.1. Annual Rainfall Distribution
3.2.2. Monthly Rainfall Distribution
3.3. Projected Climate Signal and Rainfall Distribution Variations under SSP5-8.5 Scenario
3.4. Rainfall Annual Trend Analysis
3.5. SPI Analysis of Historical and Future Drought Trends
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021—The Physical Science Basis: Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; Volume 2. [Google Scholar]
- Banholzer, S.; Kossin, J.; Donner, S. The impact of climate change on natural disasters. In Reducing Disaster: Early Warning Systems for Climate Change; Springer: Dordrecht, The Netherlands, 2014; pp. 21–49. [Google Scholar] [CrossRef]
- Kumar, N.; Poonia, V.; Gupta, B.B.; Goyal, M.K. A novel framework for risk assessment and resilience of critical infrastructure towards climate change. Technological 2021, 165, 120532. [Google Scholar] [CrossRef]
- Javadinejad, S.; Dara, R.; Jafary, F. Analysis and prioritization the effective factors on increasing farmers resilience under climate change and drought. Agric. Res. 2021, 10, 497–513. [Google Scholar] [CrossRef]
- Alahacoon, N.; Edirisinghe, M. Spatial variability of rainfall trends in Sri Lanka from 1989 to 2019 as an indication of climate change. ISPRS Int. J. Geo-Inf. 2021, 10, 84. [Google Scholar] [CrossRef]
- Abtew, W.; Dessu, S.B.; Abtew, W.; Dessu, S.B. Grand Ethiopian renaissance dam analysis. In The Grand Ethiopian Renaissance Dam on the Blue Nile; Springer: Cham, Switzerland, 2019; pp. 79–96. [Google Scholar] [CrossRef]
- Kapiri, M.M.; Mahamba, J.A.; Amani, R.K.; Mulondi, G.K.; Sahani, W.M. Drought from the 1970s to the 1990s and its Influence in the Tropical City of Beni, Eastern DR Congo. Indones. J. Soc. Environ. Issues 2023, 4, 45–58. [Google Scholar] [CrossRef]
- Posite, V.R.; Ahana, B.S.; Abdelbaki, C.; Zerga, A.; and Guadie, A. Analysis of temperature and rainfall trends in Beni City, Democratic Republic of Congo. J. Earth Syst. Sci. 2024, 133, 102. [Google Scholar] [CrossRef]
- Gebrechorkos, S.H.; Hülsmann, S.; Bernhofer, C. Long-term trends in rainfall and temperature using high-resolution climate datasets in East Africa. Sci. Rep. 2019, 9, 11376. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Chen, R.E.; Meadows, M.; Singh, R.B.; Mal, S.; Sengupta, D. An analysis of long-term rainfall trends and variability in the uttarakhand himalaya using google earth engine. Remote Sens. 2020, 12, 709. [Google Scholar] [CrossRef]
- Paredes-Trejo, F.J.; Barbosa, H.A.; Kumar, T.L. Validating CHIRPS-based satellite precipitation estimates in Northeast Brazil. J. Arid Environ. 2017, 139, 26–40. [Google Scholar] [CrossRef]
- Nkunzimana, A.; Bi, S.; Alriah, M.A.A.; Zhi, T.; Kur, N.A.D. Comparative analysis of the performance of satellite-based rainfall products over various topographical unities in Central East Africa: Case of Burundi. Earth Space Sci. 2020, 7, e2019EA000834. [Google Scholar] [CrossRef]
- Dinku, T.; Funk, C.; Peterson, P.; Maidment, R.; Tadesse, T.; Gadain, H.; Ceccato, P. Validation of the CHIRPS satellite rainfall estimates over eastern Africa. Q. J. R. Meteorol. Soc. 2018, 144, 292–312. [Google Scholar] [CrossRef]
- Macharia, J.M.; Ngetich, F.K.; Shisanya, C.A. Comparison of satellite remote sensing derived precipitation estimates and observed data in Kenya. Agric. For. Meteorol. 2020, 284, 107875. [Google Scholar] [CrossRef]
- Ngoma, H.; Wen, W.; Ojara, M.; Ayugi, B. Assessing current and future spatiotemporal precipitation variability and trends over Uganda, East Africa, based on CHIRPS and regional climate model datasets. Meteorol. Atmos. Phys. 2021, 133, 823–843. [Google Scholar] [CrossRef]
- Mulungu, D.M.; Mukama, E. Evaluation and modelling of accuracy of satellite-based CHIRPS rainfall data in Ruvu subbasin, Tanzania. Model. Earth Syst. Environ. 2023, 9, 1287–1300. [Google Scholar] [CrossRef]
- Getachew, B.; Manjunatha, B.R. Potential climate change impact assessment on the hydrology of the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Phys. Chem. Earth Parts A/B/C 2022, 127, 103162. [Google Scholar] [CrossRef]
- Isinkaralar, O. Bioclimatic comfort in urban planning and modeling spatial change during 2020–2100 according to climate change scenarios in Kocaeli, Türkiye. Int. J. Environ. Sci. Technol. 2023, 20, 7775–7786. [Google Scholar] [CrossRef]
- Ahmadalipour, A.; Rana, A.; Moradkhani, H.; Sharma, A. Multicriteria evaluation of CMIP5 GCMs for climate change impact analysis. Theor. Appl. Clim. 2017, 128, 71–87. [Google Scholar] [CrossRef]
- Alaminie, A.A.; Tilahun, S.A.; Legesse, S.A.; Zimale, F.A.; Tarkegn, G.B.; Jury, M.R. Evaluation of Past and Future Climate Trends under CMIP6 Scenarios for the UBNB (Abay), Ethiopia. Water 2021, 13, 2110. [Google Scholar] [CrossRef]
- Hofer, S.; Lang, C.; Amory, C.; Kittel, C.; Delhasse, A.; Tedstone, A.; Fettweis, X. Greater Greenland Ice Sheet contribution to global sea level rise in CMIP6. Nat. Commun. 2020, 11, 6289. [Google Scholar] [CrossRef] [PubMed]
- Kamruzzaman, M.; Shahid, S.; Islam, T.; Hwang, S.; Cho, J.; Zaman, A.U.; Ahmed, M.; Rahman, M.; Hossain, B. Comparison of CMIP6 and CMIP5 model performance in simulating historical precipitation and temperature in Bangladesh: A preliminary study. Theor. Appl. Climatol. 2021, 145, 1385–1406. [Google Scholar] [CrossRef]
- Song, Y.H.; Chung, E.S.; Shahid, S. Spatiotemporal differences and uncertainties in projections of precipitation and temperature in South Korea from CMIP6 and CMIP5 general circulation models. Int. J. Climatol. 2021, 41, 5899–5919. [Google Scholar] [CrossRef]
- Wyser, K.; Kjellström, E.; Koenigk, T.; Martins, H.; Döscher, R. Warmer climate projections in EC-Earth3-Veg: The role of changes in the greenhouse gas concentrations from CMIP5 to CMIP6. Environ. Res. Lett. 2020, 15, 054020. [Google Scholar] [CrossRef]
- Pu, Y.; Liu, H.; Yan, R.; Yang, H.; Xia, K.; Li, Y.; Dong, L.; Li, L.; Wang, H.; Nie, Y.; et al. CAS FGOALS-g3 model datasets for the CMIP6 scenario model intercomparison project (ScenarioMIP). Adv. Atmos. Sci. 2020, 37, 1081–1092. [Google Scholar] [CrossRef]
- Yokoi, R.; Watari, T.; Motoshita, M. Future greenhouse gas emissions from metal production: Gaps and opportunities towards climate goals. Energy Environ. Sci. 2022, 15, 146–157. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Togawa, T.; Hijioka, Y. Projected land-use changes in the Shared Socioeconomic Pathways: Insights and implications. Ambio 2020, 49, 1972–1981. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Michaelsen, J. The climate hazards infrared precipitation with stations a new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Novella, N.S.; Thiaw, W.M. African rainfall climatology version 2 for famine early warning systems. J. Appl. Meteorol. Climatol. 2013, 52, 588–606. [Google Scholar] [CrossRef]
- Krasting, J.P.; John, J.G.; Blanton, C.; McHugh, C.; Nikonov, S.; Radhakrishnan, A.; Rand, K.; Zadeh, N.T.; Balaji, V. NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP. Version YYYYMMDD. Earth Syst. Grid Fed. 2018. [Google Scholar] [CrossRef]
- Volodin, E.; Mortikov, E.; Gritsun, A.; Lykossov, V.; Galin, V.; Diansky, N.; Gusev, A.; Kostrykin, S.; Iakovlev, N.; Shestakova, A.; et al. INM INM-CM5-0 model output prepared for CMIP6 CMIP piControl. Version YYYYMMDD. Earth Syst. Grid Fed. 2019. [Google Scholar] [CrossRef]
- Themeßl, M.J.; Gobiet, A.; Heinrich, G. Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim. Chang. 2012, 112, 449–468. [Google Scholar] [CrossRef]
- Hodson, T.O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them or not. Geosci. Model Dev. 2022, 15, 5481–5487. [Google Scholar] [CrossRef]
- Thao, S.; Garvik, M.; Mariethoz, G.; Vrac, M. Combining global climate models using graph cuts. Clim. Dyn. 2022, 59, 2345–2361. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, S.; Samkhaniani, A.; Adeli, S.; Nikraftar, Z. Evaluation of long-term trend of different drought indices using Mann-Kendall and Sen’s slope estimator over Iran. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1141–1145. [Google Scholar] [CrossRef]
- Nyikadzino, B.; Chitakira, M.; Muchuru, S. Rainfall and runoff trend analysis in the Limpopo River basin using the Mann-Kendall statistic. Phys. Chem. Earth Parts A/B/C 2020, 117, 102870. [Google Scholar] [CrossRef]
- Salarian, M.; Larijani, S.; Banejad, H.; Heydari, M.; Ghadim, H.B. Trend analysis of water flow on Neka and Tajan rivers using parametric and non-parametric tests. Időjárás/Q. J. Hung. Meteorol. Serv. 2022, 126, 387–402. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Beltrando, G. Variabilité Interannuelle des Précipitations en Afrique Orientale (Kenya, Ouganda, Tanzanie) et Relations Avec la Dynamique de l’Atmosphère. Ph.D. Thesis, University of the Mediterranean, Marseille, France, 1990. [Google Scholar]
- Mansour, S.; Bauer, F.; Glasmacher, U.; Grobe, R.; Starz, M. Thermo-tectonic history reconstruction of the Rwenzori Mountains, Geophys. Res. Abstr. 2014, 17. [Google Scholar]
- Koehn, D.; Link, K.; Sachau, T.; Passchier, C.W.; Aanyu, K.; Spikings, A.; Harbinson, R. The Rwenzori Mountains, a Palaeoproterozoic crustal shear belt crossing the Albertine rift system. Int. J. Earth Sci. 2016, 105, 1693–1705. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Lavers, D.A.; Compo, G.P.; Gorodetskaya, I.V.; Neff, W.; Neiman, P.J.; Ramos, A.M.; Rutz, J.J.; Viale, M.; Wade, A.J.; et al. Effects of Atmospheric Rivers. In Atmospheric Rivers; Springer: Cham, Switzerland, 2020; pp. 141–177. [Google Scholar] [CrossRef]
- Vimont, U.; Gain, J.; Lastic, M.; Cordonnier, G.; Abiodun, B.; Cani, M.P. Interactive Meso-scale Simulation of Skyscapes. Comput. Graph. Forum 2020, 39, 585–596. [Google Scholar] [CrossRef]
- Linke, M.; Praeger, U.; Neuwald, D.A.; Geyer, M. Measurement of Water Vapor Condensation on Apple Surfaces during Controlled Atmosphere Storage. Sensors 2023, 23, 1739. [Google Scholar] [CrossRef]
- Tumushabe, M.W.; Helland-Hansen, W.; Nagudi, B.; Echegu, S.; Aanyu, K. Quantification of reservoir rock properties (Porosity, Permeability and Vshale) in the reservoir rock units of South Lake Albert Basin, Albertine Rift, Western Uganda. J. Afr. Earth Sci. 2022, 185, 104410. [Google Scholar] [CrossRef]
- Ademe, D.; Zaitchik, B.F.; Tesfaye, K.; Simane, B.; Alemayehu, G.; Adgo, E. Climate trends and variability at adaptation scale: Patterns and perceptions in an agricultural region of the Ethiopian Highlands. Weather Clim. Extrem. 2020, 29, 100263. [Google Scholar] [CrossRef]
- Yadav, J.S.; Tiwari, S.K.; Misra, A.; Rai, S.K.; Yadav, R.K. High-altitude meteorology of Indian Himalayan Region: Complexities, effects, and resolutions. Environ. Monit. Assess. 2021, 193, 654. [Google Scholar] [CrossRef] [PubMed]
- Fujinami, H.; Fujita, K.; Takahashi, N.; Sato, T.; Kanamori, H.; Sunako, S.; Kayastha, R.B. Twice-daily monsoon precipitation maxima in the Himalayas driven by land surface effects. J. Geophys. Res. Atmos. 2021, 126, e2020JD034255. [Google Scholar] [CrossRef]
- Saranya, P.; Krishnakumar, A.; Sinha, N.; Kumar, S.; Krishnan, K.A. Isotopic signatures of moisture recycling and evaporation processes along the Western Ghats orography. Atmos. Res. 2021, 264, 105863. [Google Scholar] [CrossRef]
- Shen, H.; Lynch, B.; Poulsen, C.J.; Yanites, B.J. A modeling framework (WRF-Landlab) for simulating orogen-scale climate-erosion coupling. Comput. Geosci. 2021, 146, 104625. [Google Scholar] [CrossRef]
- Padmakumari, B.; Kalgutkar, S.; Sunil, S.; Nikam, M.; Pandithurai, G. High temporal variability of surface solar irradiance due to cloud enhancement effect over the Western Ghat mountains in peninsular India. J. Atmos. Sol. Terr. Phys. 2022, 232, 105867. [Google Scholar] [CrossRef]
- He, J.; Yang, R.; Su, C. Data-based analysis about the influence on erosion rates of the Tibetan Plateau. J. Asian Earth Sci. 2022, 233, 105246. [Google Scholar] [CrossRef]
- Miah, M.A. The ONR-602 Experiment and investigation of particle precipitation near the equator. J. Geomagn. Geoelectr. 1991, 43, 445–460. [Google Scholar] [CrossRef]
- Mackay, A.W.; Lee, R.; Russell, J.M. Recent climate-driven ecological changes in tropical montane lakes of Rwenzori Mountains National Park, central Africa. J. Paleolimnol. 2021, 65, 219–234. [Google Scholar] [CrossRef]
- Jung, H.; Knippertz, P.; Ruckstuhl, Y.; Redl, R.; Janjic, T.; Hoose, C. Understanding the dependence of mean precipitation on convective treatment in tropical aquachannel experiments. Weather. Clim. Dyn. Discuss. 2023, 4, 1111–1134. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, H.; Li, Z.; Xie, J.; Ni, J. Hydrological and soil physiochemical variables determine the rhizospheric microbiota in subtropical lakeshore areas. PeerJ 2020, 8, e10078. [Google Scholar] [CrossRef] [PubMed]
- Pakzad, S.; Keshtkar, A.R.; Keshtkar, H.; Atashi, H.; Afzali, A. Impact of lake surface changes on climate fluctuation within a lake-affected region. Environ. Earth Sci. 2021, 80, 160. [Google Scholar] [CrossRef]
- Baule, W.J.; Andresen, J.A.; Winkler, J.A. Trends in Quality Controlled Precipitation Indicators in the United States Midwest and Great Lakes Region. Front. Water 2022, 4, 817342. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.D.; Dasqupta, P.; et al. Climate Change 2014—Synthesis Report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Chacowry, A. Meeting the challenges to climate change adaptation: An NGO community-based successful projects in Mauritius. GeoJournal 2023, 88, 4081–4094. [Google Scholar] [CrossRef] [PubMed]
- Buhl, M.; Markolf, S. A review of emerging strategies for incorporating climate change considerations into infrastructure planning, design, and decision making. Sustain. Resilient Infrastruct. 2023, 8 (Suppl. 1), 157–169. [Google Scholar] [CrossRef]
- Riahi, K.; Van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017; 42, 169–180. [Google Scholar]
- Hulme, M.; Doherty, R.; Ngara, T.; New, M.; Lister, D. African climate change: 1900–2100. Clim. Res. 2001, 17, 145–168. [Google Scholar] [CrossRef]
- Nicholson, S.E. Climate and climatic variability of rainfall over eastern Africa. Rev. Geophys. 2017, 55, 590–635. [Google Scholar] [CrossRef]
- Washington, R.; Harrison, M.; Conway, D. African climate change: Taking the shorter route. Bull. Am. Meteorol. Soc. 2006, 87, 1355–1366. [Google Scholar] [CrossRef]
ID | Observed | Latitude | Longitude (East) | Altitude (m) |
---|---|---|---|---|
1 | Aveluna | 1.23°N | 30.02 | 1564 |
2 | Bulongo | 0.33°N | 29.67 | 971 |
3 | Bunia | 1.56°N | 30.24 | 1239 |
4 | Kamango | 0.63°N | 29.87 | 859 |
5 | Kasenyi | 1.39°N | 30.43 | 638 |
6 | Kasindi/Yihunga | 0.08°N | 29.67 | 1018 |
7 | Komanda | 1.34°N | 29.76 | 928 |
8 | Kyavinyonge | −0.12°S | 29.57 | 924 |
9 | Kyondo | −0.01°S | 29.41 | 2244 |
10 | Mabalako | 0.46°N | 29.21 | 962 |
11 | Maboya | 0.28°N | 29.33 | 1407 |
12 | Oicha | 0.73°N | 29.52 | 1041 |
13 | Mount Stanley | 0.39°N | 29.87 | >4765 |
14 | Rw_P | 0.27°N | 29.83 | 3473 |
SPI | Drought Sequences |
---|---|
2.0+ | extremely wet |
1.5 to 1.99 | very wet |
1.0 to 1.49 | moderately wet |
−0.99 to 0.99 | near normal |
−1.0 to −1.49 | moderately dry |
−1.5 to −1.99 | severely dry |
−2 and less | extremely dry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posite, V.R.; Saber, M.; Ahana, B.S.; Abdelbaki, C.; Bessah, E.; Appiagyei, B.D.; Maouly, D.K.; Danquah, J.A. Modeling Spatio-Temporal Rainfall Distribution in Beni–Irumu, Democratic Republic of Congo: Insights from CHIRPS and CMIP6 under the SSP5-8.5 Scenario. Remote Sens. 2024, 16, 2819. https://doi.org/10.3390/rs16152819
Posite VR, Saber M, Ahana BS, Abdelbaki C, Bessah E, Appiagyei BD, Maouly DK, Danquah JA. Modeling Spatio-Temporal Rainfall Distribution in Beni–Irumu, Democratic Republic of Congo: Insights from CHIRPS and CMIP6 under the SSP5-8.5 Scenario. Remote Sensing. 2024; 16(15):2819. https://doi.org/10.3390/rs16152819
Chicago/Turabian StylePosite, Vithundwa Richard, Mohamed Saber, Bayongwa Samuel Ahana, Cherifa Abdelbaki, Enoch Bessah, Bright Danso Appiagyei, Djessy Karl Maouly, and Jones Abrefa Danquah. 2024. "Modeling Spatio-Temporal Rainfall Distribution in Beni–Irumu, Democratic Republic of Congo: Insights from CHIRPS and CMIP6 under the SSP5-8.5 Scenario" Remote Sensing 16, no. 15: 2819. https://doi.org/10.3390/rs16152819
APA StylePosite, V. R., Saber, M., Ahana, B. S., Abdelbaki, C., Bessah, E., Appiagyei, B. D., Maouly, D. K., & Danquah, J. A. (2024). Modeling Spatio-Temporal Rainfall Distribution in Beni–Irumu, Democratic Republic of Congo: Insights from CHIRPS and CMIP6 under the SSP5-8.5 Scenario. Remote Sensing, 16(15), 2819. https://doi.org/10.3390/rs16152819