Water Resources Monitoring in a Remote Region: Earth Observation-Based Study of Endorheic Lakes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area
2.1.1. Chungará Lake
2.1.2. Miscanti and Miniques Lakes
2.2. Data and Research Methods
2.2.1. Data Processing
2.2.2. Statistical Analysis
3. Results
3.1. The Union of Miscanti and Miniques Lakes Areas
3.2. Annual Rainfall in the Study Areas
3.3. Variation of the Lake’s Extension
3.3.1. Superficial Extent of Chungará Lake vs. Ajata Station Precipitation Data
3.3.2. Superficial Extent of Miscanti and Miniques Lakes vs. Socaire Station Precipitation Data
3.3.3. Miscanti and Miniques Lakes’ Extent after an Anomalous Rainy Period
3.4. Regression Analysis
3.4.1. Chungará Lake
3.4.2. Miscanti and Miniques Lakes
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bloomfield, J.P.; Marchant, B.P.; Mckenzie, A.A. Changes in groundwater drought associated with anthropogenic warming. Hydrol. Earth Syst. Sci. 2019, 23, 1393–1408. [Google Scholar] [CrossRef]
- Betancourt, J.L.; Latorre, C.; Rech, J.A.; Quade, J.; Rylander, K.A. A 22,000-year record of monsoonal precipitation from northern Chile’s Atacama Desert. Science 2000, 289, 1542–1546. [Google Scholar] [CrossRef]
- Grosjean, M.; Núñez, L.; Cartajena, I.; Messerli, B. Mid-Holocene climate and culture change in the Atacama Desert, northern Chile. Quat. Res. 1997, 48, 239–246. [Google Scholar] [CrossRef]
- Latorre, C.; Betancourt, J.L.; Rylander, K.A.; Quade, J. Vegetation invasions into absolute desert: A 45 000 yr rodent midden record from the Calama-Salar de Atacama basins, northern Chile (lat 22°–24°S). Bull. Geol. Soc. Am. 2002, 114, 349–366. [Google Scholar] [CrossRef]
- Latorre, C.; Betancourt, J.; Arroyo, M. Late Quaternary vegetation and climate history of a perennial river canyon in the Río Salado basin (22°S) of Northern Chile. Quat. Res. 2006, 65, 450–466. [Google Scholar] [CrossRef]
- Moreno, A.; Giralt, S.; Valero-Garcés, B.; Sáez, A.; Bao, R.; Prego, R.; Pueyo, J.J.; González-Sampériz, P.; Taberner, C. A 14kyr record of the tropical Andes: The Lago Chungará sequence (18°S, northern Chilean Altiplano). Quat. Int. 2007, 161, 4–21. [Google Scholar] [CrossRef]
- Nester, P.; Gayó, E.; Latorre, C.; Jordan, T.; Blanco, N. Perennial stream discharge in the hyperarid Atacama Desert of Northern Chile during the latest Pleistocene. Proc. Natl. Acad. Sci. USA 2008, 104, 19724–19729. [Google Scholar] [CrossRef]
- Núñez, L.; Loyola, R.; Cartajena, I.; López Mendoza, P.; Santander, B.; Maldonado, A.; De Souza, P.; Carrasco, C. Miscanti-1: Human occupation during the arid Mid-Holocene event in the high-altitude lakes of the Atacama Desert, South America. Quat. Sci. Rev. 2018, 181, 109–122. [Google Scholar] [CrossRef]
- Placzek, C.; Quade, J.; Betancourt, J.; Patchett, P.; Rech, J.; Latorre, C.; Matmon, A.; Holmgren, C.; English, N. Climate in the dry Central Andes over geologic, millennial, and interannual timescales. Ann. Mo. Bot. Gard. 2009, 96, 386–397. [Google Scholar] [CrossRef]
- Quade, J.; Rech, J.; Betancourt, J.; Latorre, C.; Quade, B.; Rylander, K.; Fisher, T. Paleowetlands and regional climate change in the central Atacama Desert, northern Chile. Quat. Res. 2008, 69, 343–360. [Google Scholar] [CrossRef]
- Rech, J.; Quade, J.; Betancourt, J. Late Quaternary paleohydrology of the central Atacama Desert (lat 22°–24°S), Chile. Geol. Soc. Am. Bull. 2002, 114, 334–348. [Google Scholar] [CrossRef]
- Sáez, A.; Godfrey, L.; Herrera, C.; Chong, G.; Pueyo, J.J. Timing of wet episodes in Atacama Desert over the last 15 ka. The Groundwater Discharge Deposits (GWD) from Domeyko Range at 25°S. Quat. Sci. Rev. 2016, 145, 82–93. [Google Scholar] [CrossRef]
- Theissen, K.; Dumbar, R.; Rowe, H.; Mucciarone, D. Multidecadal- to century-scale arid episodes on the Northern Alti-plano during the middle Holocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 257, 361–376. [Google Scholar] [CrossRef]
- Grosjean, M. Paleohydrology of the Laguna Lejía (north Chilean Altiplano) and climatic implications for late-glacial times. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 109, 89–100. [Google Scholar] [CrossRef]
- Kull, C.; Grosjean, M. Albedo changes, Milankovitch forcing, and late Quaternary climate changes in the central Andes. Clim. Dyn. 1998, 14, 871–881. [Google Scholar] [CrossRef]
- Geyh, M.A.; Grosjean, M.; Núñez, L.; Schotterer, U. Radiocarbon reservoir effect and the timing of the late-Glacial/Early Holocene humid phase in the Atacama Desert (northern Chile). Quat. Res. 1999, 52, 143–153. [Google Scholar] [CrossRef]
- Grosjean, M.; Núñez, A.L. Lateglacial, early and middle Holocene environments, human occupation, and resource use in the Atacama (northern Chile). Geoarchaeology 1994, 9, 271–286. [Google Scholar] [CrossRef]
- Grosjean, M.; Messerli, B.; Ammann, C.; Geyh, M.; Graf, K.; Jenny, B.; Kammer, K.; Núñez, L.; Schreier, H.; Schotterer, U.; et al. Holocene environmental changes in the Atacama Altiplano and paleoclimatic implications. Bull. L’institut Français D’etudes Andin. 1995, 24, 585–594. [Google Scholar] [CrossRef]
- Grosjean, M.; Van Leeuwen, J.F.N.; van der Knaap, W.O.; Geyh, M.A.; Ammann, B.; Tanner, W.; Veit, H. A 22,000 14C year BP sediment and pollen record of climate change from Laguna Miscanti (23 S), northern Chile. Glob. Planet. Chang. 2001, 28, 35–51. [Google Scholar] [CrossRef]
- Grosjean, M.; Cartajena, I.; Geyh, M.A.; Núñez, L. From proxy data to paleoclimate interpretation: The mid-Holocene paradox of the Atacama Desert, northern Chile. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 194, 247–258. [Google Scholar] [CrossRef]
- Valero-Garcés, B.; Grosjean, M.; Schwalb, A.; Geyh, M.; Messerli, B.; Kelts, K. Limnogeology of Laguna Miscanti: Evidence for mid to late Holocene moisture changes in the Atacama Altiplano (Northern Chile). J. Paleolimnol. 1996, 16, 1–21. [Google Scholar] [CrossRef]
- Wirrmann, D.; Almeida, L. Low Holocene level (7700 to 3650 years ago) of Lake Titicaca (Bolivia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 1987, 59, 315–323. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Rivera, J.A.; Arnould, G.; Leal, R. Evaluation of the ability of CMIP6 models to simulate precipitation over South-western South America: Climatic features and long-term trends (1901–2014). Atmos. Res. 2020, 241, 104953. [Google Scholar] [CrossRef]
- Torres-Batllo, J.; Martí-Cardona, B. Precipitation trends over the southern Andean Altiplano from 1981 to 2018. J. Hydrol. 2020, 590, 125485. [Google Scholar] [CrossRef]
- DGA: Dirección General de Aguas. Actualizacion del Balance Hídrico Nacional, SIT No 417; DGA: Santiago, Chile, 2017. [Google Scholar]
- Souvignet, M.; Oyarzún, R.; Verbist, K.M.J.; Gaese, H.; Heinrich, J. Hydro-meteorological trends in semi-arid north-central Chile (29–32°S): Water resources implications for a fragile Andean region. Hydrol. Sci. J. 2012, 57, 479–495. [Google Scholar] [CrossRef]
- Urrutia, R.; Vuille, M. Climate change projections for the tropical Andes using a regional climate model: Temperature and precipitation simulations for the end of the 21st century. J. Geophys. Res. Atmos. 2009, 114, D02108. [Google Scholar] [CrossRef]
- Stage, F.; Villar, R.; Zolá, R.; Roig, H.; Timouk, F.; Molina Carpio, J.; Garnier, J.; Calmant, S.; Seyler, F.; Bonnet, M.-P. Role of Climate Variability and Human Activity on Poopó Lake Droughts between 1990 and 2015 Assessed Using Remote Sensing Data. Remote Sens. 2017, 9, 218. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Hu, W.; Ma, M.; Wang, J.; Wang, Z.; Shang, S.; Wang, Z.; Che, T.; He, Q.; et al. Hydrological cycle in the Heihe River Basin and its implication for water resource management in endorheic basins. J. Geophys. Res. Atmos. 2018, 123, 890–914. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Yang, X.; Chen, Y.; Wang, J. Combined use of Sentinel-2 and Landsat 8 to monitor water surface area dynamics using Google Earth Engine. Remote Sens. Lett. 2020, 11, 687–696. [Google Scholar] [CrossRef]
- Valadão, L.V.; Cicerelli, R.E.; Almeida, T.; Curto Ma, J.B.; Garnier, J. Reservoir metrics estimated by remote sensors based on the Google Earth Engine platform. Remote Sens. Appl. Soc. Environ. 2021, 24, 100652. [Google Scholar] [CrossRef]
- Xia, H.; Zhao, J.; Qin, Y.; Yang, J.; Cui, Y.; Song, H.; Ma, L.; Jin, N.; Meng, Q. Changes in water surface area during 1989–2017 in the Huai River Basin using Landsat data and Google Earth Engine. Remote Sens. 2019, 11, 1824. [Google Scholar] [CrossRef]
- Devries, B.; Verdin, A.; Braak, K.; Barbieri, V.; Herold, M. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine. Remote Sens. Environ. 2020, 240, 111664. [Google Scholar] [CrossRef]
- Mühlhauser, H.; Hrepic, N.; Mladinic, P.; Montecino, V.; Silva, S. Water quality and limnological features of a high altitude Andean lake, Chungará, in northern Chile. Rev. Chil. Hist. Nat. 1995, 68, 341–349. [Google Scholar]
- Herrera, C.; Pueyo, J.J.; Sáez, A.; Valero-Garcés, B.L. Relación de aguas superficiales y subterráneas en el área del lago Chungará y lagunas de Cotacotani, norte de Chile: Un estudio isotópico. Rev. Geol. Chile 2006, 33, 299–325. [Google Scholar] [CrossRef]
- Pueyo, J.J.; Sáez, A.; Valero-Garcés, B.L.; Moreno, A.; Bao, R.; Schwalb, A.; Schwalb, A.; Herrera, C.; Klosowska, B.; Taberner, C. Carbonate and organic matter sedimentation and isotopic signatures in Lake Chungará, Chilean Altiplano, during the last 12.3 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 307, 339–355. [Google Scholar] [CrossRef]
- Sáez, A.; Valero-Garcés, B.; Moreno, A.; Bao, R.; Pueyo, J.J.; Gonzalez Samperiz, P.; Giralt, S.; Taberner, C.; Herrera, C.; Gibert, R. Lacustrine sedimentation in active volcanic settings: The Late Quaternary depositional evolution of Lake Chungará (northern Chile). Sedimentology 2007, 54, 1191–1222. [Google Scholar] [CrossRef]
- Garreaud, R.; Aceituno, P. Interannual rainfall variability over the South American Altiplano. J. Clim. 2001, 14, 2779–2789. [Google Scholar] [CrossRef]
- Díaz, G.C. The cenozoic saline deposits of the chilean andes between 18°00′ and 27°00′ south latitude. In The Southern Central Andes; Bahlburg, H., Breitkreuz, C., Giese, P., Eds.; Springer: Berlin, Heidelberg, 1988; Volume 17. [Google Scholar] [CrossRef]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2015, 162, 331–340. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Xue, Y.; Liu, Y. Monitoring surface water dynamics in the Yellow River Basin using Landsat time-series data and Google Earth Engine. Remote Sens. 2022, 14, 1432. [Google Scholar] [CrossRef]
- Pickens, A.H.; Hansen, M.C.; Hancher, M.; Stehman, S.V.; Tyukavina, A.; Potapov, P.; Marroquin, B.; Sherani, Z. Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series. Remote Sens. Environ. 2020, 243, 111792. [Google Scholar] [CrossRef]
- Pekel, J.F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Xavier, G.O.; Almeida, T.; Oliveira, C.M.M.; Oliveira, P.D.S.; Costa, V.H.B.; Granado, L.M.A. Estimate and evaluation of reservoir metrics in Serra da Mesa dam (GO) using the Google Earth Engine platform. Rev. Ambiente Água 2020, 15, e2584. [Google Scholar] [CrossRef]
- Pekel, J.F.; Vancutsem, C.; Bastin, L.; Clerici, M.; Vanbogaert, E.; Bartholomé, E.; Defourny, P. A near real-time water surface detection method based on HSV transformation of MODIS multi-spectral time series data. Remote Sens. Environ. 2014, 140, 704–716. [Google Scholar] [CrossRef]
- Blin, N.; Hausner, M.; Leray, S.; Lowry, C.; Suárez, F. Potential impacts of climate change on an aquifer in the arid Altiplano, northern Chile: The case of the protected wetlands of the Salar del Huasco basin. J. Hydrol. Reg. Stud. 2022, 39, 100996. [Google Scholar] [CrossRef]
- Li, D.; Zhang, Y.; Xie, H.; Qiu, J. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi catchment (Taihu lake basin, China). J. Hydrol. 2018, 556, 1139–1152. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Shum, C.K.; Yi, S.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A.; et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; van der Velde, R.; Wang, J.; Famiglietti, J.S. Recent global decline in endorheic basin water storages. Nat. Geosci. 2018, 11, 926–932. [Google Scholar] [CrossRef]
- Yapiyev, V.; Sagintayev, Z.; Jumassultanova, S.; Sagintayev, Z.; Kalugin, A.; Kostyuchenko, Y.; Karabulatov, S.; Verhoef, A. Essentials of endorheic basins and lakes: A review in the context of current and future water resource management and mitigation activities in Central Asia. Water 2017, 9, 798. [Google Scholar] [CrossRef]
- Sant’Anna Commar, L.F.; Barros Vitorino, F.; Castro, M.; Pousa, R.; Heil Costa, M. A Hydroclimatic Forecast System to Support Decision-Making and Improve Water Security in an Agricultural Frontier of the Brazilian Cerrado. J. Water Resour. Plann. Manag. 2024, 150, 05023023. [Google Scholar] [CrossRef]
- Dorsaz, J.-M.; Jaboyedoff, M.; Carrea, D.; Derron, M.-H.; Loye, A.; Nicolet, P.; Vaucher, S. The geomorphometry of endorheic drainage basins: Implications for interpreting and modelling their evolution. Earth Surf. Process. Landf. 2013, 38, 1881–1896. [Google Scholar] [CrossRef]
- Barría, P.; Chadwick, C.; Ocampo-Melgar, A.; Galleguillos, M.; Garreaud, R.; Díaz-Vasconcellos, R.; Poblete, D.; Rubio-Álvarez, E.; Poblete-Caballero, D. Water management or megadrought: What caused the Chilean Aculeo Lake drying? Reg. Environ. Chang. 2021, 21, 19. [Google Scholar] [CrossRef]
Chungará Lake | Miscanti Lake | Miniques Lake | |
---|---|---|---|
Basin Area (Km2) | 267.06 | 267.72 | 17.68 |
Basin Perimeter (Km) | 96109.2 | 99.02 | 22.92 |
Maximum Elevation (m) | 6299 | 5774 | 5763 |
Minimum Elevation (m) | 4556 | 4141 | 4131 |
Total Channel Length (Km) | 141.88 | 233.05 | 10.50 |
Drainage Density | 0.53 | 0.87 | 0.59 |
Maximum Axis (Km) | 13.69 | 1.09 | 3.27 |
Minimum Axis (Km) | 6.20 | 7.68 | 1.72 |
Compactness Coefficient (Kc) | 1.64 | 1.69 | 1.52 |
Form Factor (Kf) | 0.45 | 0.69 | 0.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garnier, J.; Cicerelli, R.E.; de Almeida, T.; Belo, J.C.R.; Curto, J.; Ramos, A.P.M.; Valadão, L.V.; Satge, F.; Bonnet, M.-P. Water Resources Monitoring in a Remote Region: Earth Observation-Based Study of Endorheic Lakes. Remote Sens. 2024, 16, 2790. https://doi.org/10.3390/rs16152790
Garnier J, Cicerelli RE, de Almeida T, Belo JCR, Curto J, Ramos APM, Valadão LV, Satge F, Bonnet M-P. Water Resources Monitoring in a Remote Region: Earth Observation-Based Study of Endorheic Lakes. Remote Sensing. 2024; 16(15):2790. https://doi.org/10.3390/rs16152790
Chicago/Turabian StyleGarnier, Jeremie, Rejane E. Cicerelli, Tati de Almeida, Julia C. R. Belo, Julia Curto, Ana Paula M. Ramos, Larissa V. Valadão, Frederic Satge, and Marie-Paule Bonnet. 2024. "Water Resources Monitoring in a Remote Region: Earth Observation-Based Study of Endorheic Lakes" Remote Sensing 16, no. 15: 2790. https://doi.org/10.3390/rs16152790
APA StyleGarnier, J., Cicerelli, R. E., de Almeida, T., Belo, J. C. R., Curto, J., Ramos, A. P. M., Valadão, L. V., Satge, F., & Bonnet, M. -P. (2024). Water Resources Monitoring in a Remote Region: Earth Observation-Based Study of Endorheic Lakes. Remote Sensing, 16(15), 2790. https://doi.org/10.3390/rs16152790