Ionosphere Monitoring with Remote Sensing Vol II
1. Introduction
2. Overview of Contributions and Future Perspectives
Funding
Conflicts of Interest
References
- Wen, D.; Xie, K.; Tang, Y.; Mei, D.; Chen, X.; Chen, H. A New Algorithm for Ill-Posed Problem of GNSS-Based Ionospheric Tomography. Remote Sens. 2023, 15, 1930. [Google Scholar] [CrossRef]
- Pietrella, M.; Pezzopane, M.; Pignatelli, A.; Pignalberi, A.; Settimi, A. An Updating of the IONORT Tool to Perform a High-Frequency Ionospheric Ray Tracing. Remote Sens. 2023, 15, 5111. [Google Scholar] [CrossRef]
- Bi, C.; Ren, P.; Yin, T.; Xiang, Z.; Zhang, Y. Modeling and Forecasting Ionospheric foF2 Variation in the Low Latitude Region during Low and High Solar Activity Years. Remote Sens. 2022, 14, 5418. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Q.; Shi, Y.; Liu, Y.; Yang, C. An Explainable Dynamic Prediction Method for Ionospheric foF2 Based on Machine Learning. Remote Sens. 2023, 15, 1256. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Y.; Gao, S.; Wang, Z.; Wang, X.; Chen, B.; Liu, Y.; Zhou, C.; Zhao, Z. Statistical Analysis of SF Occurrence in Middle and Low Latitudes Using Bayesian Network Automatic Identification. Remote Sens. 2023, 15, 1108. [Google Scholar] [CrossRef]
- Feng, J.; Zhang, Y.; Xu, N.; Chen, B.; Xu, T.; Wu, Z.; Deng, Z.; Liu, Y.; Wang, Z.; Zhou, Y.; et al. Statistical Study of the Ionospheric Slab Thickness at Yakutsk High-Latitude Station. Remote Sens. 2022, 14, 5309. [Google Scholar] [CrossRef]
- Feng, J.; Yuan, Y.; Zhang, T.; Zhang, Z.; Meng, D. Analysis of Ionospheric Anomalies before the Tonga Volcanic Eruption on 15 January 2022. Remote Sens. 2023, 15, 4879. [Google Scholar] [CrossRef]
- Valdés-Abreu, J.C.; Díaz, M.; Bravo, M.; Stable-Sánchez, Y. IonosphericTotal Electron Content Changes during the 15 February 2018 and 30 April 2022 Solar Eclipses over South America and Antarctica. Remote Sens. 2023, 15, 4810. [Google Scholar] [CrossRef]
- Lovati, G.; De Michelis, P.; Alberti, T.; Consolini, G. Unveiling the Core Patterns of High-Latitude Electron Density Distribution at Swarm Altitude. Remote Sens. 2023, 15, 4550. [Google Scholar] [CrossRef]
- Sergeeva, M.A.; Maltseva, O.A.; Vesnin, A.M.; Blagoveshchensky, D.V.; Gatica-Acevedo, V.J.; Gonzalez-Esparza, J.A.; Chernov, A.G.; Orrala-Legorreta, I.D.; Melgarejo-Morales, A.; Gonzalez, L.X.; et al. Solar Flare Effects Observed over Mexico during 30–31 March 2022. Remote Sens. 2023, 15, 397. [Google Scholar] [CrossRef]
- Beeck, S.S.; Mitchell, C.N.; Jensen, A.B.O.; Stenseng, L.; Pinto Jayawardena, T.; Olesen, D.H. Experimental Determination of the Ionospheric Effects and Cycle Slip Phenomena for Galileo and GPS in the Arctic. Remote Sens. 2023, 15, 5685. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Y.; Feng, J.; Zhang, Y.; Zhou, Y.; Zhou, C.; Zhao, Z. High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology. Remote Sens. 2023, 15, 285. [Google Scholar] [CrossRef]
- Kunitsyn, V.E.; Andreeva, E.S.; Razinkov, O.G. Possibilities of the near-space environment radio tomography. Radio Sci. 1997, 32, 1953–1963. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Truhlik, V.; Shubin, V.; Galkin, I.; Reinisch, B.; Huang, X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 2017, 15, 418–429. [Google Scholar] [CrossRef]
- Haselgrove, J. Ray Theory and a New Method for Ray Tracing. In The Physics of the Ionosphere: Report of the Physical Society Conference, Held at Cavendish Laboratory, Cambridge, September 1954; Physical Society: London, UK, 1955; pp. 355–364. [Google Scholar]
- Azzarone, A.; Bianchi, C.; Pezzopane, M.; Pietrella, M.; Scotto, C.; Settimi, A. IONORT: A Windows soft-ware tool to calculate the HF ray tracing in the ionosphere. Comput. Geosci. 2012, 42, 57–63. [Google Scholar] [CrossRef]
- Bilitza, D.; Pezzopane, M.; Truhlik, V.; Altadill, D.; Reinisch, B.W.; Pignalberi, A. The International Reference Ionosphere model: A review and description of an ionospheric benchmark. Rev. Geophys. 2022, 60, e2022RG000792. [Google Scholar] [CrossRef]
- Bilitza, D.; Obrou, O.; Adeniyi, J.; Oladipo, O. Variability of foF2 in the equatorial ionosphere. Adv. Space Res. 2004, 34, 1901–1906. [Google Scholar] [CrossRef]
- Chen, C.; Wu, Z.S.; Xu, Z.W.; Sun, S.J.; Ding, Z.H.; Ban, P.P. Forecasting the local ionospheric foF2 parameter 1 hour ahead during disturbed geomagnetic conditions. J. Geophys. Res. Space Phys. 2010, 115, 135–146. [Google Scholar] [CrossRef]
- Bai, H.; Feng, F.; Wang, J. A Combination Prediction Model of Long-Term Ionospheric foF2 Based on Entropy Weight Method. Entropy 2020, 22, 442. [Google Scholar] [CrossRef]
- Maltseva, O. The Influence of Space Weather on the Relationship Between the Parameters TEC and foF2 of the Ionosphere. IEEE J. Radio Freq. Identif. 2021, 5, 261–268. [Google Scholar] [CrossRef]
- Pezzopane, M.; Scotto, C. Automatic scaling of critical frequency foF2 and MUF(3000)F2: A comparison between Autoscala and ARTIST 4.5 on Rome data. Radio Sci. 2007, 42, RS4003. [Google Scholar] [CrossRef]
- Pezzopane, M.; Pillat, V.; Fagundes, P. Automatic scaling of critical frequency foF2 from ionograms recorded at São José dos Campos, Brazil: A comparison between Autoscala and UDIDA tools. Acta Geophys. 2017, 65, 173–187. [Google Scholar] [CrossRef]
- Scotto, C.; Ippolito, A.; Sabbagh, D. A method for automatic detection of equatorial spread-F in Ionograms. Adv. Space Res. 2019, 63, 337–342. [Google Scholar] [CrossRef]
- Lan, T.; Hu, H.; Jiang, C.; Yang, G.; Zhao, Z. A Comparative Study of Decision Tree, Random Forest, and Convolutional Neural Network for Spread-F Identification. Adv. Space Res. 2020, 65, 2052–2061. [Google Scholar] [CrossRef]
- Rao, T.V.; Sridhar, M.; Ratnam, D.V. Auto-detection of sporadic E and spread F events from the digital ionograms. Adv. Space Res. 2022, 70, 1142–1152. [Google Scholar]
- Mendillo, M.; Huang, C.-L.; Pi, X.; Rishbeth, H.; Meier, R. The Global Ionospheric Asymmetry in Total Electron Content. J. Atmos. Sol.-Terr. Phys. 2005, 67, 1377–1387. [Google Scholar] [CrossRef]
- Berkner, L.V.; Wells, H.W.; Seaton, S.L. Characteristics of the Upper Region of the Ionosphere. Terr. Magn. Atmos. Electr. 1936, 41, 173–184. [Google Scholar] [CrossRef]
- Rishbeth, H.; Setty, C.S.G.K. The F-Layer at Sunrise. J. Atmos. Terr. Phys. 1961, 20, 263–276. [Google Scholar] [CrossRef]
- King, G.A.M. The Dissociation of Oxygen and High Level Circulation in the Atmosphere. J. Atmos. Sci. 1964, 21, 231–237. [Google Scholar] [CrossRef]
- Berkner, L.V.; Wells, H.W. Non-Seasonal Change of F2-Region Ion-Density. Terr. Magn. Atmos. Electr. 1938, 43, 15–36. [Google Scholar] [CrossRef]
- Whitcomb, J.H.; Garmany, J.D.; Anderson, D.L. Earthquake Prediction: Variation of Seismic Velocities before the San Francisco Earthquake. Science 1973, 180, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Pulinets, S. Ionospheric Precursors of Earthquakes; Recent Advances in Theory and Practical Applications. Terr. Atmos. Ocean. Sci. 2004, 15, 413–435. [Google Scholar] [CrossRef]
- Ke, F.; Wang, Y.; Wang, X.; Qian, H.; Shi, C. Statistical analysis of seismo-ionospheric anomalies related to Ms > 5.0 earthquakes in China by GPS TEC. J. Seismol. 2016, 20, 137–149. [Google Scholar] [CrossRef]
- Iwata, T.; Umeno, K. Preseismic ionospheric anomalies detected before the 2016 Kumamoto earthquake. J. Geophys. Res. Space Phys. 2017, 122, 3602–3616. [Google Scholar] [CrossRef]
- Xie, T.; Chen, B.; Wu, L.; Dai, W.; Kuang, C.; Miao, Z. Detecting Seismo-Ionospheric Anomalies Possibly Associated with the 2019 Ridgecrest (California) Earthquakes by GNSS, CSES, and Swarm Observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028761. [Google Scholar] [CrossRef]
- Davis, C.J.; Lockwood, M.; Bell, S.A.; Smith, J.A.; Clarke, E.M. Ionospheric measurements of relative coronal brightness during the total solar eclipses of 11 August, 1999 and 9 July, 1945. Ann. Geophys. 2000, 18, 182–190. [Google Scholar] [CrossRef]
- Krankowski, A.; Shagimuratov, I.; Baran, L.; Yakimova, G. The effect of total solar eclipse of October 3, 2005, on the total electron content over Europe. Adv. Space Res. 2008, 41, 628–638. [Google Scholar] [CrossRef]
- Chen, X.; Dang, T.; Zhang, B.; Lotko, W.; Pham, K.; Wang, W.; Lin, D.; Sorathia, K.; Merkin, V.; Luan, X.; et al. Global Effects of a Polar Solar Eclipse on the Coupled Magnetosphere-Ionosphere System. Geophys. Res. Lett. 2021, 48, e2021GL096471. [Google Scholar] [CrossRef]
- Adekoya, B.; Chukwuma, V. Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude. J. Atmos. Sol. Terr. Phys. 2016, 138–139, 136–160. [Google Scholar] [CrossRef]
- Cowley, S.W.H. TUTORIAL: Magnetosphere-Ionosphere Interactions: A Tutorial Review. Geophys. Monogr. Ser. 2000, 118, 91. [Google Scholar]
- Davies, K. Ionospheric Radio Propagation; Monograph 80; National Bureau of Standards: Gaithersburg, MD, USA, 1965; 487p. [Google Scholar]
- Mitra, A.P. Ionospheric Effect of Solar Flares; Reidel: Norwell, MA, USA, 1974. [Google Scholar]
- Hunsucker, R.D.; Hargreaves, J.K. The High-Latitude Ionosphere and Its Effects on Radio Propagation; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Dmitriev, A.V.; Yeh, H.-C.; Chao, J.-K.; Veselovsky, I.S.; Su, S.-Y.; Fu, C.C. Top-side ionosphere response to extreme solar events. Ann. Geophys. 2006, 24, 1469–1477. [Google Scholar] [CrossRef]
- Mendillo, M.; Erickson, P.J.; Zhang, S.-R.; Mayyasi, M.; Narvaez, C.; Thiemann, E.; Chamberlain, P.; Andersson, L.; Peterson, W. Flares at Earth and Mars: An ionospheric escape mechanism? Space Weather 2018, 16, 1042–1056. [Google Scholar] [CrossRef]
- Krankowski, A.; Shagimuratov, I.I.; Baran, L.W. Mapping of foF2 over Europe based on GPS-derived TEC data. Adv. Space Res. 2007, 39, 651–660. [Google Scholar] [CrossRef]
- Gerzen, T.; Jakowski, N.; Wilken, V.; Hoque, M.M. Reconstruction of F2 layer peak electron density based on operational vertical total electron content maps. Ann. Geophys. 2013, 31, 1241–1249. [Google Scholar] [CrossRef]
- Maltseva, O.A.; Mozhaeva, N.S.; Nikitenko, T.V. Validation of the Neustrelitz Global Model according to the low latitude ionosphere. Adv. Space Res. 2014, 54, 463–472. [Google Scholar] [CrossRef]
- Jayachandran, B.; Krishnankutty, T.; Gulyaeva, T. Climatology of ionospheric slab thickness. Ann. Geophys. 2004, 22, 25–33. [Google Scholar] [CrossRef]
- Yadav, R.; Bhawre, P. Ionospheric slab thickness over high latitude Antarctica during the maxima of solar cycle 23rd. Int. J. Curr. Res. 2020, 12, 10041–10046. [Google Scholar]
- Pignalberi, A.; Pietrella, M.; Pezzopane, M.; Nava, B.; Cesaroni, C. The Ionospheric Equivalent Slab Thickness: A Review Supported by a Global Climatological Study Over Two Solar Cycles. Space Sci. Rev. 2022, 218, 37. [Google Scholar] [CrossRef]
- Pi, X.; Mannucci, A.J.; Lindqwister, U.J.; Ho, C.M. Monitoring of global ionospheric irregularities using the worldwide GPS network. Geophys. Res. Lett. 1997, 24, 2283–2286. [Google Scholar] [CrossRef]
- Jiao, Y.; Morton, Y.; Taylor, S.; Pelgrum, W. Characterization of high-latitude ionospheric scintillation of GPS signals. Radio Sci. 2013, 48, 698–708. [Google Scholar] [CrossRef]
- Veettil, S.V.; Aquino, M.; Spogli, L. A statistical approach to estimate Global Navigation Satellite Systems (GNSS) receiver signal tracking performance in the presence of ionospheric scintillation. J. Space Weather Space Clim. 2018, 8, A51. [Google Scholar] [CrossRef]
- Estey, L.; Wier, S. Teqc Tutorial: Basic of Teqc Use and Teqc Products; UNAVCO: Boulder, CO, USA, 2014. [Google Scholar]
- Yamamoto, M.; Fukao, S.; Ogawa, T.; Tsuda, K.; Kato, S. A morphological study on mid-latitude E-region field-aligned irregularities observed with the MU radar. J. Atmos. Sol. Terr. Phys. 1992, 54, 769–777. [Google Scholar] [CrossRef]
- Haldoupis, C.; Schlegel, K. Characteristic of midlatitude coherent backscatter from the ionospheric E region obtained with Sporadic E scatter experiment. J. Geophys. Res. 1996, 101, 13387–13397. [Google Scholar] [CrossRef]
- Fukao, S.; Yamamoto, M.; Tsunoda, R.T.; Hayakawa, H.; Mukai, T. The SEEK (Sporadic-E Experiment over Kyushu) Campaign. Geophys. Res. Lett. 1998, 25, 1761–1764. [Google Scholar] [CrossRef]
- Yamamoto, M.; Fukao, S.; Woodman, R.F.; Ogawa, T.; Tsuda, T.; Kato, S. Midlatitude E region field-aligned irregularities observed with the MU radar. J. Geophys. Res. 1991, 96, 15943–15949. [Google Scholar] [CrossRef]
- Woodman, R.F.; Yamamoto, M.; Fukao, S. Gravity wave modulation of gradient drift instabilities in mid-latitude sporadic E irregularities. J. Geophys. Res. 1991, 18, 1197–1200. [Google Scholar] [CrossRef]
- Maruyama, T.; Fukao, S.; Yamamoto, M. A possible mechanism for echo striation generation of radar backscatter from midlatitude sporadic E. Radio Sci. 2000, 35, 1155–1164. [Google Scholar] [CrossRef]
- Larsen, M.F. A shear instability seeding mechanism for quasiperiodic radar echoes. J. Geophys. Res. 2000, 105, 24931–24940. [Google Scholar] [CrossRef]
- Cosgrove, R.B.; Tsunoda, R.T. Simulation of the nonlinear evolution of the sporadic-E layer instability in the nighttime midlatitude ionosphere. J. Geophys. Res. 2003, 108, 1283. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giannattasio, F. Ionosphere Monitoring with Remote Sensing Vol II. Remote Sens. 2024, 16, 2762. https://doi.org/10.3390/rs16152762
Giannattasio F. Ionosphere Monitoring with Remote Sensing Vol II. Remote Sensing. 2024; 16(15):2762. https://doi.org/10.3390/rs16152762
Chicago/Turabian StyleGiannattasio, Fabio. 2024. "Ionosphere Monitoring with Remote Sensing Vol II" Remote Sensing 16, no. 15: 2762. https://doi.org/10.3390/rs16152762
APA StyleGiannattasio, F. (2024). Ionosphere Monitoring with Remote Sensing Vol II. Remote Sensing, 16(15), 2762. https://doi.org/10.3390/rs16152762