Leveraging Google Earth Engine and Machine Learning to Estimate Evapotranspiration in a Commercial Forest Plantation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Processing
3. Results
3.1. Validation of Kc Estimates for Acacia mearnsii
3.2. Comparison of Evapotranspiration Estimates for Acacia mearnsii
4. Discussion
- (i)
- While the use of LAI to predict KCact may adequately account for biophysical properties that influence plant canopy processes, soil water availability which is a limiting factor to ET may not be adequately accounted for in the proposed methodology.
- (ii)
- The remotely sensed LAI values were not validated against in situ observations to evaluate their accuracy. Cloud cover is one of the major factors that contribute to inaccuracies in the MODIS LAI composites. Since the 4-day MODIS LAI image collection used in this study was not screened and filtered for cloud contamination, there may potentially be inaccuracies contained within the dataset. Furthermore, vegetation biophysical characteristics, LAI estimation algorithms and seasonal influences also contribute to inaccuracies [58] and remain unaccounted for in this study. Subsequently, these potential inaccuracies in this dataset may contribute to the KCact model being trained on data that are not always an adequate representation of the vegetation’s biophysical characteristics.
- (iii)
- According to Drechsler et al. [51], KCact estimates derived during summer periods are generally more consistent than those derived during winter, since ETo is less variable from day to day during the summer.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gush, M.B.; Scott, D.F.; Jewitt, G.P.W.; Schulze, R.E.; Hallowes, L.A.; Görgens, A.H.M. A new approach to modelling streamflow reductions resulting from commercial afforestation in South Africa. S. Afr. For. J. 2002, 196, 27–36. [Google Scholar] [CrossRef]
- Dye, P.; Versfeld, D. Managing the hydrological impacts of South African plantation forests: An overview. For. Ecol. Manag. 2007, 251, 121–128. [Google Scholar] [CrossRef]
- Jewitt, G.P.W.; Lorentz, S.A.; Gush, M.B.; Thornton-Dibb, S.; Kongo, V.; Wiles, L.; Blight, J.; Stuart-Hill, S.I.; Versfeld, D.; Tomlinson, K. Methods and Guidelines for the Licensing of SFRAs with Particular Reference to Low Flows; WRC Report No. 1428/1/09; Water Research Commission (WRC): Pretoria, South Africa, 2009; ISBN 978-1-77005-877-4. [Google Scholar]
- Toucher, M.L.; Everson, C.E. The Expansion of Knowledge on Evapotranspiration and Stream Flow Reduction of Different Clones/Hybrids to Improve the Water Use Estimation of SFRA Species (i.e., Pinus, Eucalyptus and Acacia Species); Deliverable 3, WRC Project no. K5/2791; Water Research Commission (WRC): Pretoria, South Africa, 2018. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef]
- Zhao, L.; Xia, J.; Xu, C.; Wang, Z.; Sobkowiak, L.; Long, C. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sci. 2013, 23, 359–369. [Google Scholar] [CrossRef]
- Liu, C.; Sun, G.; McNulty, S.G.; Noormets, A.; Fang, Y. Environmental controls on seasonal ecosystem evapotranspiration/potential evapotranspiration ratio as determined by the global eddy flux measurements. Hydrol. Earth Syst. Sci. 2017, 21, 311–322. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.; Kan, G.; Hong, Y. Study on the Applicability of the Hargreaves Potential Evapotranspiration Estimation Method in CREST Distributed Hydrological Model (Version 3.0) Applications. Water 2018, 10, 1882. [Google Scholar] [CrossRef]
- Li, F.; Ma, Y. Evaluation of the Dual Crop Coefficient Approach in Estimating Evapotranspiration of Drip-Irrigated Summer Maize in Xinjiang, China. Water 2019, 11, 1053. [Google Scholar] [CrossRef]
- Hunnik, J.E.; Eekhout, J.P.C.; de Vente, J.; Contreras, S.; Droogers, P.; Baille, A. Hydrological Modelling Using Satellite-Based Crop Coefficients: A Comparison of Methods at the Basin Scale. Remote Sens. 2017, 9, 174. [Google Scholar] [CrossRef]
- Pereira, L.; Paredes, P.; Hunsaker, D.J.; López-Urrea, R.; Mohammadi Shad, Z. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method. Agric. Water Manag. 2021, 243, 106466. [Google Scholar] [CrossRef]
- Tran, H.Q.; Fehér, Z.Z. Water balance calculation capability of hydrological models. Acta Agrar. 2022, 26, 37–53. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.A.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; p. 300. [Google Scholar]
- Nagy, A.; Kiss, N.É.; Buday-Bódi, E.; Magyar, T.; Cavazza, F.; Gwntile, S.L.; Abdullah, H.; Tamás, J.; Fehér, Z.Z. Precision Estimation of Crop Coefficient for Maize Cultivation Using High-Resolution Satellite Imagery to Enhance Evapotranspiration Assessment in Agriculture. Plants 2024, 13, 1212. [Google Scholar] [CrossRef]
- Perreira, L.S.; Paredes, P.; Espírito-Santo, D.; Salman, M. Actual and standard crop coefficients for semi-natural and planted grasslands and grasses: A review aimed at supporting water management to improve production and ecosystem services. Irrig. Sci. 2023. [Google Scholar] [CrossRef]
- Descheemaeker, K.; Raes, D.; Allen, R.; Nysen, J.; Poesen, J.; Muys, B.; Haile, M.; Deckers, J. Two rapid appraisals of FAO-56 crop coefficients for semiarid natural vegetation of the northern Ethiopian highlands. J. Arid Environ. 2011, 75, 353–359. [Google Scholar] [CrossRef]
- Glenn, E.P.; Neale, C.M.U.; Hunsaker, D.J.; Nagler, P.L. Vegetation index-based crop coefficients to estimate evapotranspiration by remote sensing in agricultural and natural ecosystems. Hydrol. Process. 2011, 25, 4050–4062. [Google Scholar] [CrossRef]
- Corbari, C.; Ravazzani, G.; Galvagno, M.; Cremonese, E.; Mancini, M. Assessing Crop Coefficients for Natural Vegetated Areas Using Satellite Data and Eddy Covariance Stations. Sensors 2017, 17, 2664. [Google Scholar] [CrossRef] [PubMed]
- Mukiibi, A.; Franke, A.C.; Steyn, J.M. Determination of Crop Coefficients and Evapotranspiration of Potato in a Semi-Arid Climate Using Canopy State Variables and Satellite-Based NDVI. Remote Sens. 2023, 15, 4579. [Google Scholar] [CrossRef]
- Pereira, L.; Paredes, P.; Melton, F.; Johnson, L.; Wang, T.; López-Urrea, R.; Cancella, J.J.; Allen, R.G. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agric. Water Manag. 2020, 241, 106197. [Google Scholar] [CrossRef]
- Beeri, O.; Netzer, Y.; Munitz, S.; Mintz, D.F.; Pelta, R.; Shilo, T.; Horesh, A.; Mey-tal, S. Kc and LAI Estimations Using Optical and SAR Remote Sensing Imagery for Vineyards Plots. Remote Sens. 2020, 12, 3478. [Google Scholar] [CrossRef]
- Feng, Y.; Cui, N.; Gong, D.; Wang, H.; Hao, W.; Mei, X. Estimating rainfed spring maize evapotranspiration using modified dual crop coefficient approach based on leaf area index. Trans. Chin. Soc. Agric. Eng. 2016, 32, 90–98. [Google Scholar]
- Park, J.; Baik, J.; Choi, M. Satellite-based crop coefficient and evapotranspiration using surface soil moisture and vegetation indices in Northeast Asia. CATENA 2017, 156, 305–314. [Google Scholar] [CrossRef]
- Netzer, Y.; Munitz, S.; Shtein, I.; Schwartz, A. Structural memory in grapevines: Early season water availability affects late season drought stress severity. Eur. J. Agron. 2019, 105, 96–103. [Google Scholar] [CrossRef]
- Chen, H.; Huang, J.J.; McBean, E. Partitioning of daily evapotranspiration using a modified shuttleworth-wallace model, random Forest and support vector regression, for a cabbage farmland. Agric. Water Manag. 2020, 228, 105923. [Google Scholar] [CrossRef]
- Ohana-Levei, N.; Munitz, S.; Ben-Gal, A.; Schwartz, A.; Peeters, A.; Netzer, Y. Multiseasonal grapevine water consumption—Drivers and forecasting. Agric. For. Meteorol. 2020, 280, 107796. [Google Scholar] [CrossRef]
- Fan, J.; Zheng, J.; Wu, L.; Zhang, F. Estimation of daily maize transpiration using support vector machines, extreme gradient boosting, artificial and deep neural networks models. Agric. Water Manag. 2021, 245, 106547. [Google Scholar] [CrossRef]
- Jia, Q.; Wang, Y. Relationships between Leaf Area Index and Evapotranspiration and Crop Coefficient of Hilly Apple Orchard in the Loess Plateau. Water 2021, 13, 1957. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Yu, S.; Teng, A.; Zhang, C.; Lei, L.; Ba, Y.; Chen, X. Crop coefficient determination and evapotranspiration estimation of watermelon under water deficit in a cold and arid environment. Front. Plant Sci. 2023, 14, 11538. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PARfrom year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef]
- Shao, G.; Han, W.; Zhang, H.; Liu, S.; Wang, Y.; Zhang, L.; Cui, X. Mapping maize crop coefficient Kc using random forest algorithm based on leaf area index and UAV-based multispectral vegetation indices. Agric. Water Manag. 2021, 252, 106906. [Google Scholar] [CrossRef]
- Gao, X.; Dirmeyer, P.A.; Guo, Z.; Zhao, M. Sensitivity of land surface simulations to the treatment of vegetation properties and the implications for seasonal climate prediction. J. Hydrometeorol. 2008, 9, 348–366. [Google Scholar] [CrossRef]
- Fang, H.; Li, W.; Wei, S.; Jiang, C. Seasonal variation of leaf area index (LAI) over paddy rice fields in NE China: Intercomparison of destructive sampling, LAI-2200, digital hemispherical photography (DHP), and AccuPAR methods. Agric. For. Meteorol. 2014, 198–199, 126–141. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; van den Brande, M.M.M. Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Alexandridis, T.; Ovakoglou, G.; Clevers, J.G.P.W. Relationship between MODIS EVI and LAI across time and space. Geocarto Int. 2019, 35, 1385–1399. [Google Scholar] [CrossRef]
- Ovakoglou, G.; Alexandridis, T.K.; Clevers, J.P.W.; Gitas, I.Z. Downscaling of MODIS leaf area index using landsat vegetation index. Geocarto Int. 2020, 37, 2466–2489. [Google Scholar] [CrossRef]
- Fang, H.; Baret, H.; Plummer, S.; Schaepman-Strub, D. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Pérez-Cutillas, P.; Pérez-Navarro, A.; Conesa-García, C.; Zema, D.A.; Amado-Álvarez, J.P. What is going on within google earth engine? A systematic review and meta-analysis. Remote Sens. Appl. Soc. Environ. 2023, 29, 100907. [Google Scholar] [CrossRef]
- Vather, T.; Everson, C.S.; Franz, T. The Applicability of the Cosmic Ray Neutron Sensor to Simultaneously Monitor Soil Water Content and Biomass in an Acacia mearnsii Forest. Hydrology 2020, 7, 48. [Google Scholar] [CrossRef]
- Ngubo, C.Z.; Demlie, M.; Lorentz, S. Investigation of hydrological processes and the impacts of Acacia mearnsii plantations on groundwater in secondary aquifers: Case study at the two-stream research catchment, South Africa. J. Hydrol. Reg. Stud. 2020, 40, 101018. [Google Scholar] [CrossRef]
- Department of Water Affairs (DWA). Business Case for the Inkomati-Usuthu Catchment Management Agency; Department of Water Affairs (DWA): Gaborone, Botswana, 2012. [Google Scholar]
- Department of Water Affairs (DWA). Business Case for the Pongola-Umzimkulu Catchment Management Agency; Department of Water Affairs (DWA): Gaborone, Botswana, 2013. [Google Scholar]
- Clulow, A.D.; Everson, C.S.; Gush, M.B. The Long-Term Impact of Acacia mearnsii Trees on Evaporation, Streamflow and Groundwater Resources; WRC Report No. TT 505/11; Water Research Commission (WRC): Pretoria, South Africa, 2011; ISBN 978-1-4312-0020-3. [Google Scholar]
- Everson, C.S.; Toucher, M.; Vather, T.; Mfeka, S.; Lawrence, K.; Horan, R.; Govender, J.; Gray, B.; Ramjeawon, M.; Aldswaorth, T. Continued Hydrometeorological Monitoring at the Two Streams Catchment for the Clear Felling of the Acacia mearnsii Stand; WRC Project No. K5/2780; Water Research Commission (WRC): Pretoria, South Africa, 2018; ISBN 978-1-4312-0020-3. [Google Scholar]
- Kaptein, N.D.; Everson, C.S.; Clulow, A.D.; Toucher, M.L.; Germishuizen, I. Changes in energy balance and total evaporation with age, and between two commercial forestry species in South Africa. J. Hydrol. 2023, 626, 130127. [Google Scholar] [CrossRef]
- Parent, A.-C.; Anctil, F. Quantifying evapotranspiration of a rainfed potato crop in South-eastern Canada using eddy covariance techniques. Agric. Water Manag. 2012, 113, 45–56. [Google Scholar] [CrossRef]
- Gokool, S.; Jarmain, C.; Riddell, E.; Swemmer, A.; Lerm, R., Jr.; Chetty, K.T. Quantifying riparian total evaporation along the Groot Letaba River: A comparison between infilled and spatially downscaled satellite derived total evaporation estimates. J. Arid Environ. 2017, 147, 114–124. [Google Scholar] [CrossRef]
- Ippolito, M.; De Caro, D.; Ciraolo, G.; Minacapilli, M.; Provenzano, G. Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data. Irrig. Sci. 2023, 41, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, K.; Fullton, A.; Kisekka, I. Crop coefficients and water use of young almond orchards. Irrig. Sci. 2022, 40, 379–395. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Kustas, W.P.; Wang, Y. Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference. J. Appl. Remote Sens. 2016, 6, 063554. [Google Scholar] [CrossRef]
- Yan, K.; Park, T.; Yan, G.; Liu, Z.; Yang, B.; Chen, C.; Nemani, R.R.; Knyazikhin, Y.; Myneni, R.B. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sens. 2016, 8, 460. [Google Scholar] [CrossRef]
- Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 2008, 28, 1–26. [Google Scholar] [CrossRef]
- Mayer, Z. caretEnsemble: Framework for Combining Caret Models into Ensembles; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Hirigoyen, A.; Acosta-Muñoz, C.; Salamanca, A.J.A.; Varo-Martinez, M.A.; Rachid-Casnati, C.; Franco, J.; Navarro-Cerrillo, R. A machine learning approach to model leaf area index in Eucalyptus plantations using high-resolution satellite imagery and airborne laser scanner data. Ann. For. Res. 2021, 64, 165–183. [Google Scholar] [CrossRef]
- Mashabatu, M.; Ntshidi, Z.; Dzikiti, S.; Jovanovic, N.; Dube, T.; Taylor, N.J. Deriving crop coefficients for evergreen and deciduous fruit orchards in South Africa using the fraction of vegetation cover and tree height data. Agric. Water Manag. 2023, 286, 108389. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, J.; Woo, C.; Lee, K. Analysis of temporal variability of MODIS Leaf Area Index (LAI) product over temperate forest in Korea. In Proceedings of the Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 29 July 2005. [Google Scholar] [CrossRef]
- Cetin, M.; Alsenjar, O.; Aksu, H.; Golpinar, M.S.; Akgul, M.A. Estimation of crop water stress index and leaf area index based on remote sensing data. Water Supply 2023, 23, 1390–1404. [Google Scholar] [CrossRef]
- Liu, S.; Pan, X.; Yang, Y.; Yuan, J.; Yang, Z.; Wang, Z.; Xie, W.; Song, H. A Crop water stress index based on Remote Sensing methods for monitoring drought in an Arid area. Remote Sens. Lett. 2023, 14, 890–900. [Google Scholar] [CrossRef]
- Safdar, M.; Shahid, M.A.; Sarwar, A.; Rasul, F.; Majeed, M.D.; Sabir, R.M. Crop Water Stress Detection Using Remote Sensing Techniques. Environ. Sci. Proc. 2023, 25, 20. [Google Scholar] [CrossRef]
- Ihuoma, S.O.; Madramootoo, C.A. Recent advances in crop water stress detection. Comput. Electron. Agric. 2017, 14, 267–275. [Google Scholar] [CrossRef]
- Gokool, S.; Kunz, R.; Toucher, M. Deriving moderate spatial resolution leaf area index estimates from coarser spatial resolution satellite products. Remote Sens. Appl. Soc. Environ. 2022, 26, 743. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning. ISPRS J. Photogramm. Remote Sens. 2017, 135, 173–188. [Google Scholar] [CrossRef]
Model | MAE | RMSE | R2 |
---|---|---|---|
RF | 0.07 | 0.09 | 0.12 |
SVM | 0.06 | 0.08 | 0.13 |
GLM | 0.06 | 0.08 | 0.17 |
CART | 0.06 | 0.08 | 0.23 |
kNN | 0.06 | 0.08 | 0.23 |
EMLM | 0.03 | 0.05 | 0.68 |
Observed | EMLM | |
---|---|---|
Total (mm) | 7341 | 7280 |
Average (mm d−1) | 3.08 | 3.06 |
RMSE (mm d−1) | 0.51 | |
MAE (mm d−1) | 0.29 | |
R2 | 0.90 | |
p-value | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gokool, S.; Kunz, R.; Clulow, A.; Toucher, M. Leveraging Google Earth Engine and Machine Learning to Estimate Evapotranspiration in a Commercial Forest Plantation. Remote Sens. 2024, 16, 2726. https://doi.org/10.3390/rs16152726
Gokool S, Kunz R, Clulow A, Toucher M. Leveraging Google Earth Engine and Machine Learning to Estimate Evapotranspiration in a Commercial Forest Plantation. Remote Sensing. 2024; 16(15):2726. https://doi.org/10.3390/rs16152726
Chicago/Turabian StyleGokool, Shaeden, Richard Kunz, Alistair Clulow, and Michele Toucher. 2024. "Leveraging Google Earth Engine and Machine Learning to Estimate Evapotranspiration in a Commercial Forest Plantation" Remote Sensing 16, no. 15: 2726. https://doi.org/10.3390/rs16152726
APA StyleGokool, S., Kunz, R., Clulow, A., & Toucher, M. (2024). Leveraging Google Earth Engine and Machine Learning to Estimate Evapotranspiration in a Commercial Forest Plantation. Remote Sensing, 16(15), 2726. https://doi.org/10.3390/rs16152726