One Algorithm to Rule Them All? Defining Best Strategy for Land Surface Temperature Retrieval from NOAA-AVHRR Afternoon Satellites
Abstract
:1. Introduction
- Provide information on the different datasets used for the simulation and validation of LST algorithms (Section 2);
- Describe the methodology used for algorithm coefficients determination and their validation (Section 3);
- Present the results of this validation (Section 4);
- And discuss the obtained results and select which algorithm or combination of algorithms we will use for further studies of the NOAA-AVHRR archive (Section 5).
2. Data
2.1. Simulation Data
2.2. In Situ Validation Data
2.3. NOAA-AVHRR Data
2.4. Independent Satellite LST Data
3. Methodology
3.1. LST Algorithm
3.2. Validation
4. Results
5. Discussion
5.1. Validation Strategy
5.2. Selection of Best Suited Algorithm
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens. 1990, 28, 940–948. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. Towards a Reliable Correction of NOAA AVHRR Orbital. Drift. Front. Remote Sens. 2022, 3, 8. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Gómez, M.; Jiménez-Muñoz, J.C.; Olioso, A. Application of a simple algorithm to estimate daily evapotranspiration from NOAA-AVHRR images for the Iberian Peninsula. Remote Sens. Environ. 2007, 110, 139–148. [Google Scholar] [CrossRef]
- Corbari, C.; Sobrino, J.A.; Mancini, M.; Hidalgo, V. Land surface temperature representativeness in a heterogeneous area through a distributed energy-water balance model and remote sensing data. Hydrol. Earth Syst. Sci. 2010, 14, 2141–2151. [Google Scholar] [CrossRef]
- Nemani, R.; Running, S. Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecol. Appl. 1997, 7, 79–90. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A. The Yearly Land Cover Dynamics (YLCD) method: An analysis of global vegetation from NDVI and LST parameters. Remote Sens. Environ. 2009, 113, 329–334. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y. Trend analysis of global MODIS-Terra vegetation indices and land surface temperature between 2000 and 2011. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2139–2145. [Google Scholar] [CrossRef]
- Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al. Evaluation of Climate Models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Sobrino, J.A.; Oltra-Carrió, R.; Sòria, G.; Jiménez-Muñoz, J.C.; Franch, B.; Hidalgo, V.; Mattar, C.; Julien, Y.; Cuenca, J.; Romaguera, M.; et al. Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int. J. Remote Sens. 2013, 34, 3177–3192. [Google Scholar] [CrossRef]
- Lehoczky, A.; Sobrino, J.A.; Skokovic, D.; Aguilar, E. The Urban Heat Island Effect in the City of Valencia: A Case Study for Hot Summer Days. Urban Sci. 2017, 1, 9. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote sensing land surface temperature for meteorology and climatology: A review. Met. Apps 2011, 18, 296–306. [Google Scholar] [CrossRef]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Price, J.C. Land surface temperature measurements from split-window channels of the NOAA advance very high-resolution radiometer. J. Geophys. Res. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Prata, A.J.; Platt, C.M.R. Land surface temperature measurements from the AVHRR. In Proceedings of the 5th AVHRR Data Users Meeting, Tromso, Norway, 25–28 June 1991; EUM PO9. pp. 433–438. [Google Scholar]
- Vidal, A. Atmospheric and emissivity correction of land surface temperature measured from satellite using ground measurements or satellite data. Int. J. Remote Sens. 1991, 12, 2449–2460. [Google Scholar] [CrossRef]
- Ulivieri, C.; Castronuovo, M.M.; Francioni, R.; Cardillo, A. A split-window algorithm for estimating land surface temperature satellites. Research 1994, 14, 59–65. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z. Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sens. Rev. 1995, 12, 225–253. [Google Scholar] [CrossRef]
- Francois, C.; Ottle, C. Atmospheric corrections in the thermal infrared: Global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data. IEEE Trans. Geosci. Remote Sens. 1996, 34, 457–470. [Google Scholar] [CrossRef]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Ma, Y.; Tsukamoto, O. Combining Satellite Remote Sensing with Field Observations for Land Surface Heat Fluxes Over Inhomogeneous Landscape, China Meteorol.; China Meteorological Press: Beijing, China, 2002. [Google Scholar]
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y.; Jiménez-Muñoz, J.-C.; Skokovic, D.; Sòria, G. Near real-time estimation of Sea and Land surface temperature for MSG SEVIRI sensors. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 2096. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.-C.; Sobrino, J.A. Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. IEEE Geosci. Remote Sens. Lett. 2008, 5, 806–809. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Cristobal, J.; Sobrino, J.A.; Soria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Mattar, C.; Durán-Alarcón, C.; Jiménez-Muñoz, J.C.; Santamaría-Artigas, A.; Olivera-Guerra, L.; Sobrino, J.A. Global Atmospheric profiles from reanalysis information (GAPRI): A new database for earth surface temperature retrieval. Int. J. Remote Sens. 2015, 36, 5045–5060. [Google Scholar] [CrossRef]
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
- Prata, A.J.; O’Brien, D.M.; Platt, C.M.R. Algorithms for deriving land surface temperature from satellite measurements. In Proceedings of the 5th Australasian Remote Sensing Conference, Perth, WA, Australia, 8–12 October 1990; pp. 256–266. [Google Scholar]
- Prata, A.J. Validation Data for Land Surface Temperature Determination from Satellites; /A.J. Prata. Aspendale, Vic.; CSIRO Division of Atmospheric Research: Mordialloc, Australia, 1994. [Google Scholar]
- Pedelty, J.; Devadiga, S.; Masuoka, E.; Brown, M.; Pinzon, J.; Tucker, C.; Vermote, E.; Prince, S.; Nagol, J.; Justice, C.; et al. Generating a long-term land data record from the AVHRR and MODIS Instruments. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1021–1025. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A.; Sòria, G. Retrieving and broadcasting near-real-time biophysical parameters from MODIS and SEVIRI receiving stations at the global change unit of the University of Valencia. Int. J. Remote Sens. 2015, 36, 5273–5288. [Google Scholar] [CrossRef]
- Baret, F.; Morissette, J.; Fernandes, R.; Champeaux, J.L.; Myneni, R.; Chen, J.; Plummer, S.; Weiss, M.; Bacour, C.; Garrigues, S.; et al. Evaluation of the representativeness of networks of sites for the validation and inter-comparison of land bio-physical products proposition of the CEOS-BELMANIP. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1794–1803. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with ATSR data. Int. J. Remote Sens. 1996, 17, 2089–2114. [Google Scholar] [CrossRef]
- Ignatov, A.; Laszlo, I.; Harrod, E.D.; Kidwell, K.B.; Goodrum, G.P. Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites. Int. J. Remote Sens. 2004, 25, 5255–5266. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y. Exploring the Validity of the Long-Term Data Record V4 Database for Land Surface Monitoring. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3607–3614. [Google Scholar] [CrossRef]
- Sobrino, J.; Julien, Y.; Morales, L. Multitemporal analysis of PAL images for the study of land cover dynamics in South America. Glob. Planet. Chang. 2006, 51, 172–180. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. In Renewable Energy; Routledge: London, UK, 2018; pp. Vol1_146–Vol1_194. [Google Scholar]
- Trigo, I.F.; Boussetta, S.; Viterbo, P.; Balsamo, G.; Beljaars, A.; Sandu, I. Comparison of model land skin temperature with remotely sensed estimates and assessment of surface-atmosphere coupling. J. Geophys. Res. Atmos. 2015, 120, 12096–12111. [Google Scholar] [CrossRef]
- Johannsen, F.; Ermida, S.; Martins, J.P.A.; Trigo, I.F.; Nogueira, M.; Dutra, E. Cold Bias of ERA5 Summertime Daily Maximum Land Surface Temperature over Iberian Peninsula. Remote Sens. 2019, 11, 2570. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Morales Salinas, L. Final Project Report: Impacto del Cambio Climático en la Sustentabilidad de la Producción Ganadera de la Región Mediterránea Árida y Semiárida de Chile, Agencia Española de Cooperación Internacional AECI A/229/03); Sobrino, J.A., Ed.; University of Valencia: Valencia, Spain, 2005. [Google Scholar]
Algorithm | Filter | a1 | a2 | a3 | a4 | a5 | a6 | a0 | RMSE |
---|---|---|---|---|---|---|---|---|---|
SR2000 | N07–14 | 1.40 | 0.32 | 57.00 | −5.00 | −161.00 | 30.00 | 0.83 | 1.30 |
GAPRI | N07 | 1.81 | 0.15 | 51.47 | −3.50 | −134.47 | 21.08 | 0.23 | 1.35 |
N09 | 2.05 | 0.15 | 50.35 | −3.20 | −146.71 | 23.26 | 0.33 | 1.45 | |
N11 | 1.93 | 0.15 | 51.05 | −3.39 | −140.86 | 22.26 | 0.27 | 1.40 | |
N14 | 1.53 | 0.13 | 51.91 | −3.58 | −118.18 | 18.33 | 0.18 | 1.21 | |
N16 | 1.56 | 0.19 | 52.17 | −3.52 | −123.42 | 18.84 | 0.14 | 1.27 | |
N18 | 1.42 | 0.14 | 52.11 | −3.63 | −113.62 | 17.51 | 0.14 | 1.17 | |
N19 | 1.27 | 0.13 | 52.18 | −3.63 | −105.41 | 16.02 | 0.10 | 1.11 | |
N07–14 | 1.82 | 0.15 | 51.30 | −3.46 | −134.48 | 21.13 | 0.25 | 1.35 | |
N07–19 | 1.63 | 0.15 | 51.89 | −3.59 | −124.77 | 19.37 | 0.19 | 1.27 | |
N16–19 | 1.41 | 0.15 | 52.13 | −3.58 | −113.53 | 17.37 | 0.12 | 1.18 | |
STD66 | N07 | 1.65 | 0.35 | 47.13 | −2.99 | −127.23 | 19.42 | 0.21 | 1.43 |
N09 | 1.96 | 0.32 | 45.95 | −2.57 | −141.16 | 22.27 | 0.28 | 1.56 | |
N11 | 1.81 | 0.34 | 46.53 | −2.79 | −134.57 | 20.95 | 0.24 | 1.50 | |
N14 | 1.38 | 0.29 | 47.71 | −3.17 | −110.84 | 16.60 | 0.27 | 1.27 | |
N16 | 1.24 | 0.45 | 48.67 | −3.38 | −111.66 | 15.56 | 0.15 | 1.30 | |
N18 | 1.20 | 0.31 | 48.18 | −3.33 | −105.21 | 15.31 | 0.14 | 1.22 | |
N19 | 1.00 | 0.30 | 48.77 | −3.51 | −95.80 | 13.44 | 0.13 | 1.13 | |
N07–14 | 1.69 | 0.32 | 46.89 | −2.91 | −127.76 | 19.68 | 0.25 | 1.43 | |
N07–19 | 1.43 | 0.34 | 47.76 | −3.20 | −116.35 | 17.32 | 0.19 | 1.33 | |
N16–19 | 1.14 | 0.34 | 48.50 | −3.39 | −103.64 | 14.69 | 0.14 | 1.21 | |
TIGR61 | N07 | 1.57 | 0.41 | 49.66 | −4.29 | −126.58 | 18.71 | 0.14 | 1.27 |
N09 | 1.87 | 0.42 | 49.18 | −4.18 | −139.41 | 20.94 | 0.20 | 1.37 | |
N11 | 1.72 | 0.41 | 49.53 | −4.28 | −133.21 | 19.90 | 0.17 | 1.32 | |
N14 | 1.30 | 0.35 | 49.66 | −4.27 | −109.64 | 15.93 | 0.22 | 1.13 | |
N16 | 1.22 | 0.48 | 49.27 | −4.00 | −114.61 | 16.37 | 0.13 | 1.19 | |
N18 | 1.13 | 0.35 | 49.58 | −4.22 | −105.64 | 15.24 | 0.11 | 1.10 | |
N19 | 0.95 | 0.34 | 49.35 | −4.12 | −97.07 | 13.73 | 0.10 | 1.04 | |
N07–14 | 1.60 | 0.40 | 49.60 | −4.29 | −126.54 | 18.75 | 0.18 | 1.26 | |
N07–19 | 1.36 | 0.39 | 49.72 | −4.28 | −116.45 | 16.97 | 0.14 | 1.19 | |
N16–19 | 1.09 | 0.38 | 49.34 | −4.09 | −105.16 | 15.02 | 0.11 | 1.11 | |
TIGR1761 | N07 | 1.78 | 0.19 | 42.54 | −1.05 | −119.80 | 17.54 | 0.20 | 1.56 |
N09 | 2.02 | 0.18 | 40.81 | −0.21 | −131.36 | 19.64 | 0.26 | 1.69 | |
N11 | 1.91 | 0.19 | 41.75 | −0.68 | −126.13 | 18.72 | 0.23 | 1.63 | |
N14 | 1.52 | 0.17 | 43.12 | −1.25 | −104.87 | 15.11 | 0.26 | 1.38 | |
N16 | 1.50 | 0.25 | 44.71 | −1.85 | −106.58 | 14.64 | 0.16 | 1.41 | |
N18 | 1.38 | 0.18 | 44.08 | −1.73 | −99.18 | 13.95 | 0.15 | 1.32 | |
N19 | 1.21 | 0.17 | 44.79 | −2.02 | −90.44 | 12.30 | 0.13 | 1.22 | |
N07–14 | 1.80 | 0.18 | 42.14 | −0.85 | −120.05 | 17.67 | 0.24 | 1.56 | |
N07–19 | 1.59 | 0.19 | 43.38 | −1.41 | −110.00 | 15.78 | 0.19 | 1.44 | |
N16–19 | 1.35 | 0.20 | 44.52 | −1.87 | −98.13 | 13.54 | 0.15 | 1.31 | |
TIGR2311 | N07 | 2.02 | 0.21 | 52.23 | −7.38 | −130.59 | 19.08 | −0.03 | 1.62 |
N09 | 2.32 | 0.19 | 50.52 | −6.77 | −144.66 | 21.44 | 0.04 | 1.76 | |
N11 | 2.17 | 0.20 | 51.48 | −7.12 | −137.99 | 20.36 | 0.00 | 1.69 | |
N14 | 1.71 | 0.18 | 52.81 | −7.54 | −113.71 | 16.41 | 0.03 | 1.45 | |
N16 | 1.69 | 0.28 | 54.06 | −7.82 | −116.33 | 16.58 | −0.07 | 1.49 | |
N18 | 1.54 | 0.20 | 53.69 | −7.86 | −107.28 | 15.26 | −0.09 | 1.39 | |
N19 | 1.34 | 0.19 | 54.29 | −8.04 | −97.33 | 13.52 | −0.10 | 1.31 | |
N07–14 | 2.04 | 0.20 | 51.86 | −7.25 | −131.06 | 19.22 | 0.01 | 1.62 | |
N07–19 | 1.80 | 0.21 | 53.05 | −7.65 | −119.42 | 17.21 | −0.04 | 1.51 | |
N16–19 | 1.51 | 0.22 | 54.00 | −7.90 | −106.31 | 15.02 | −0.09 | 1.39 |
Atmospheric Dataset | BIAS (K) | RMSE (K) | ||||
---|---|---|---|---|---|---|
N11 | N07–14 | N07–19 | N11 | N07–14 | N07–19 | |
GAPRI | −0.09 | 0.13 | 0.49 | 1.22 | 1.13 | 1.09 |
STD66 | −0.46 | −0.23 | 0.19 | 1.63 | 1.45 | 1.27 |
TIGR1761 | 0.04 | 0.23 | 0.56 | 1.25 | 1.17 | 1.15 |
TIGR2311 | −0.46 | −0.24 | 0.15 | 1.55 | 1.38 | 1.21 |
TIGR61 | −0.61 | −0.36 | 0.09 | 1.80 | 1.59 | 1.35 |
SR2000 | −0.42 | 1.41 |
Atmospheric Dataset | Bias (K) | ||
---|---|---|---|
N11 | N07–14 | N07–19 | |
GAPRI | −2.16 | −2.18 | −1.66 |
STD66 | −1.58 | −1.50 | −0.93 |
TIGR1761 | −2.26 | −2.24 | −1.76 |
TIGR2311 | −1.81 | −1.76 | −1.21 |
TIGR61 | −1.41 | −1.33 | −0.70 |
SR2000 | 0.04 |
Atmospheric Dataset | RMSE (K) | ||
---|---|---|---|
N07, N09, N11, N14 | N07–14 | N07–19 | |
GAPRI | 1.33 | 1.19 | 1.52 |
STD66 | 1.09 | 0.93 | 1.10 |
TIGR1761 | 1.58 | 1.45 | 1.70 |
TIGR2311 | 1.16 | 0.97 | 1.19 |
TIGR61 | 1.10 | 0.98 | 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Julien, Y.; Sobrino, J.A.; Jiménez-Muñoz, J.-C. One Algorithm to Rule Them All? Defining Best Strategy for Land Surface Temperature Retrieval from NOAA-AVHRR Afternoon Satellites. Remote Sens. 2024, 16, 2720. https://doi.org/10.3390/rs16152720
Julien Y, Sobrino JA, Jiménez-Muñoz J-C. One Algorithm to Rule Them All? Defining Best Strategy for Land Surface Temperature Retrieval from NOAA-AVHRR Afternoon Satellites. Remote Sensing. 2024; 16(15):2720. https://doi.org/10.3390/rs16152720
Chicago/Turabian StyleJulien, Yves, José A. Sobrino, and Juan-Carlos Jiménez-Muñoz. 2024. "One Algorithm to Rule Them All? Defining Best Strategy for Land Surface Temperature Retrieval from NOAA-AVHRR Afternoon Satellites" Remote Sensing 16, no. 15: 2720. https://doi.org/10.3390/rs16152720
APA StyleJulien, Y., Sobrino, J. A., & Jiménez-Muñoz, J. -C. (2024). One Algorithm to Rule Them All? Defining Best Strategy for Land Surface Temperature Retrieval from NOAA-AVHRR Afternoon Satellites. Remote Sensing, 16(15), 2720. https://doi.org/10.3390/rs16152720