A Deep Learning Approach to Segment Coastal Marsh Tidal Creek Networks from High-Resolution Aerial Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Characteristics
2.2. Dataset Characteristics
2.3. Proposed Architecture: Attention-Based Dense U-Net Model (ADU-Net)
- U-Net: The U-Net model, proposed by Ronneberger et al. in 2015 [53], is a basic architecture for semantic segmentation tasks, consisting of two main components: the encoder (left half) and the decoder (right half). The encoder encompasses downsampling layers, progressively increasing the filters in each step and extracting high-level feature representations from the input image. The decoder involves upsampling operations to reconstruct the original image size. Additionally, U-Net uses skip connections, significantly improving the reconstruction quality. The downsampling operations in the encoder can lead to the loss of fine-grained spatial information. Thus, skip connections enable the decoder to preserve the spatial details by providing a direct pathway for information to bypass the downsampling layers. Thus, the U-Net model’s elegance lies in its ability to harness the local features effectively, its distinctive “U” shape, and the incorporation of skip connections. U-Net retains fine-detailed information by integrating skip connections, enabling accurate feature extraction and reconstruction. Thus, leveraging global and local context facilitates precise pixel-level classification and segmentation tasks.
- Dense Layers: ADU-Net incorporates DenseNet architecture to enhance feature extraction and address gradient-related issues. The Dense Net is a variation of a traditional convolutional neural network (CNN) [54] introducing dense connections between layers. With the conventional CNN, as the network size increases, it can face either an exploding or vanishing gradient problem. DenseNet adopts a unique characteristic known as dense connectivity to address these issues.In the DenseNet architecture, feature maps from preceding layers are not simply passed sequentially but concatenated to subsequent layers. Figure 3 illustrates this dense connectivity pattern. Within each dense block, comprising three 2-D CNN layers, the input to the layer consists of the concatenated features from layers . This dense connectivity promotes feature reuse, effectively addressing the vanishing gradient problem and fostering enhanced information flow throughout the network. By integrating dense connections, DenseNet enables the model to capture and leverage essential features from all levels of the network, contributing to improved performance.ADU-Net comprises 9 dense blocks with three 2D convolutional layers as depicted in Figure 3. The encoder has 5 dense blocks. After each dense block in the encoder, a max-pooling layer is applied to reduce the spatial resolution. As we obtain the latent space representation, the spatial resolution decreases, and the feature map increases. In the decoder, there are four dense blocks, and an upsampling layer is applied before each dense block.
- Attention Layers: The ADU-Net architecture the incorporates Convolutional Block Attention Module (CBAM) [55] in its encoder and decoder components to emphasize salient spatial regions (refer to Figure 4). We have incorporated the spatial attention mechanism to enhance the network’s focus on essential areas within the input data. The spatial attention is computed by applying average-pooling and max-pooling operations along every channel and concatenating them. The pooling operation highlights the relevant information present in the input.In the ADU-Net design, the attention layer is strategically placed after each dense block, allowing for selective emphasis on significant features within the densely connected layers. This placement ensures that attention is applied just before the upsampling operation in the decoder phase. The network obtains attention-normalized features before expanding the spatial resolution by incorporating the attention layer prior to upsampling. This strategic integration of the attention layer facilitates U-Net’s ability to discern and prioritize relevant spatial information during encoding and decoding processes. It improves the model’s capacity to capture and leverage critical features, leading to more effective and contextually rich representations in the final output.
2.4. Model Experiments
3. Results
3.1. Sensitivity Analysis
3.2. Ablation Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Syvitski, J.P.; Vorosmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Kennish, M.J. Coastal salt marsh systems in the US: A review of anthropogenic impacts. J. Coast. Res. 2001, 17, 731–748. [Google Scholar]
- Barlow, P.M.; Reichard, E.G. Saltwater intrusion in coastal regions of North America. Hydrogeol. J. 2010, 18, 247. [Google Scholar] [CrossRef]
- French, J.R.; Spencer, T. Dynamics of sedimentation in a tide-dominated backbarrier salt marsh, Norfolk, UK. Mar. Geol. 1993, 110, 315–331. [Google Scholar] [CrossRef]
- Hughes, A.L.; Wilson, A.M.; Morris, J.T. Hydrologic variability in a salt marsh: Assessing the links between drought and acute marsh dieback. Estuar. Coast. Shelf Sci. 2012, 111, 95–106. [Google Scholar] [CrossRef]
- Möller, I.; Kudella, M.; Rupprecht, F.; Spencer, T.; Paul, M.; Van Wesenbeeck, B.K.; Wolters, G.; Jensen, K.; Bouma, T.J.; Miranda-Lange, M.; et al. Wave attenuation over coastal salt marshes under storm surge conditions. Nat. Geosci. 2014, 7, 727–731. [Google Scholar] [CrossRef]
- Altieri, A.H.; Bertness, M.D.; Coverdale, T.C.; Herrmann, N.C.; Angelini, C. A trophic cascade triggers collapse of a salt-marsh ecosystem with intensive recreational fishing. Ecology 2012, 93, 1402–1410. [Google Scholar] [CrossRef]
- Kelleway, J.J.; Cavanaugh, K.; Rogers, K.; Feller, I.C.; Ens, E.; Doughty, C.; Saintilan, N. Review of the ecosystem service implications of mangrove encroachment into salt marshes. Glob. Chang. Biol. 2017, 23, 3967–3983. [Google Scholar] [CrossRef] [PubMed]
- Barbier, E.B.; Georgiou, I.Y.; Enchelmeyer, B.; Reed, D.J. The value of wetlands in protecting southeast Louisiana from hurricane storm surges. PLoS ONE 2013, 8, e58715. [Google Scholar] [CrossRef]
- Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C. Global carbon sequestration in tidal, saline wetland soils. Glob. Biogeochem. Cycles 2003, 17, 1111. [Google Scholar] [CrossRef]
- Crotty, S.M.; Pinton, D.; Canestrelli, A.; Fischman, H.S.; Ortals, C.; Dahl, N.R.; Williams, S.; Bouma, T.J.; Angelini, C. Faunal engineering stimulates landscape-scale accretion in southeastern US salt marshes. Nat. Commun. 2023, 14, 881. [Google Scholar] [CrossRef]
- Crotty, S.M.; Ortals, C.; Pettengill, T.M.; Shi, L.; Olabarrieta, M.; Joyce, M.A.; Altieri, A.H.; Morrison, E.; Bianchi, T.S.; Craft, C.; et al. Sea-level rise and the emergence of a keystone grazer alter the geomorphic evolution and ecology of southeast US salt marshes. Proc. Natl. Acad. Sci. USA 2020, 117, 17891–17902. [Google Scholar] [CrossRef]
- Ortals, C.; Cordero, O.; Valle-Levinson, A.; Angelini, C. Flows, transport, and effective drag in intertidal salt marsh creeks. J. Geophys. Res. Ocean. 2021, 126, e2021JC017357. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Hannion, M.; D’Odorico, P. Geomorphic structure of tidal hydrodynamics in salt marsh creeks. Water Resour. Res. 2008, 44, W02419. [Google Scholar] [CrossRef]
- Christiansen, T.; Wiberg, P.; Milligan, T. Flow and sediment transport on a tidal salt marsh surface. Estuar. Coast. Shelf Sci. 2000, 50, 315–331. [Google Scholar] [CrossRef]
- Temmerman, S.; Bouma, T.; Govers, G.; Lauwaet, D. Flow paths of water and sediment in a tidal marsh: Relations with marsh developmental stage and tidal inundation height. Estuaries 2005, 28, 338–352. [Google Scholar] [CrossRef]
- Angelini, C.; van Montfrans, S.G.; Hensel, M.J.; He, Q.; Silliman, B.R. The importance of an underestimated grazer under climate change: How crab density, consumer competition, and physical stress affect salt marsh resilience. Oecologia 2018, 187, 205–217. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Kirwan, M.L.; Mudd, S.M.; Guntenspergen, G.R.; Temmerman, S.; D’Alpaos, A.; Van De Koppel, J.; Rybczyk, J.M.; Reyes, E.; Craft, C.; et al. Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Rev. Geophys. 2012, 50, RG1002. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Burns, C.J.; Alexander, C.R.; Alber, M. Assessing long-term trends in lateral salt-marsh shoreline change along a US east coast latitudinal gradient. J. Coast. Res. 2021, 37, 291–301. [Google Scholar]
- Mou, K.; Gong, Z.; Qiu, H. Spatiotemporal differentiation and development process of tidal creek network morphological characteristics in the Yellow River Delta. J. Geogr. Sci. 2021, 31, 1633–1654. [Google Scholar] [CrossRef]
- Chen, C.; Tian, B.; Schwarz, C.; Zhang, C.; Guo, L.; Xu, F.; Zhou, Y.; He, Q. Quantifying delta channel network changes with Landsat time-series data. J. Hydrol. 2021, 600, 126688. [Google Scholar] [CrossRef]
- Otsu, N. A threshold selection method from gray-level histograms. Automatica 1975, 11, 23–27. [Google Scholar] [CrossRef]
- Gong, Z.; Wang, Q.; Guan, H.; Zhou, D.; Zhang, L.; Jing, R.; Wang, X.; Li, Z. Extracting tidal creek features in a heterogeneous background using Sentinel-2 imagery: A case study in the Yellow River Delta, China. Int. J. Remote Sens. 2020, 41, 3653–3676. [Google Scholar] [CrossRef]
- Gong, Z.; Mou, K.; Wang, Q.; Qiu, H.; Zhang, C.; Zhou, D. Parameterizing the Yellow River Delta tidal creek morphology using automated extraction from remote sensing images. Sci. Total Environ. 2021, 769, 144572. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Wilkinson, B.; Ifju, P.; Ortega, A. Estimating ground elevation and vegetation characteristics in coastal salt marshes using UAV-based LiDAR and digital aerial photogrammetry. Remote Sens. 2021, 13, 4506. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, M.; Zhao, S.; Zhan, W.; Yang, K.; Li, M. Automated extraction of tidal creeks from airborne laser altimetry data. J. Hydrol. 2015, 527, 1006–1020. [Google Scholar] [CrossRef]
- Geng, L.; Gong, Z.; Lanzoni, S.; D’Alpaos, A. A new method for automatic definition of tidal creek networks. J. Coast. Res. 2018, 85, 156–160. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Bortoluzzi, A.; Dietrich, W.E.; Adami, A.; Lanzoni, S.; Marani, M.; Rinaldo, A. Tidal networks: 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour. Res. 1999, 35, 3891–3904. [Google Scholar] [CrossRef]
- Dronova, I.; Gong, P.; Clinton, N.E.; Wang, L.; Fu, W.; Qi, S.; Liu, Y. Landscape analysis of wetland plant functional types: The effects of image segmentation scale, vegetation classes and classification methods. Remote Sens. Environ. 2012, 127, 357–369. [Google Scholar] [CrossRef]
- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann: Cambridge, MA, USA, 1988. [Google Scholar]
- Cramer, J.S. The Origins of Logistic Regression; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386. [Google Scholar] [CrossRef]
- Rosenblatt, F. The Perceptron, a Perceiving and Recognizing Automaton Project Para; Cornell Aeronautical Laboratory: Buffalo, NY, USA, 1957. [Google Scholar]
- Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Haykin, S. Neural Networks and Learning Machines, 3/E; Pearson Education: Bengaluru, India, 2009. [Google Scholar]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Fix, E. Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties; USAF School of Aviation Medicine: Dayton, OH, USA, 1985; Volume 1. [Google Scholar]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Whyte, A.; Ferentinos, K.P.; Petropoulos, G.P. A new synergistic approach for monitoring wetlands using Sentinels-1 and 2 data with object-based machine learning algorithms. Environ. Model. Softw. 2018, 104, 40–54. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Cui, Y.; Hodgson, M. Mapping salt marsh along coastal South Carolina using U-Net. ISPRS J. Photogramm. Remote Sens. 2021, 179, 121–132. [Google Scholar] [CrossRef]
- Morgan, G.R.; Wang, C.; Li, Z.; Schill, S.R.; Morgan, D.R. Deep learning of high-resolution aerial imagery for coastal marsh change detection: A comparative study. ISPRS Int. J. Geo-Inf. 2022, 11, 100. [Google Scholar] [CrossRef]
- Zheng, G.; Wang, Y.; Zhao, C.; Dai, W.; Kattel, G.R.; Zhou, D. Quantitative Analysis of Tidal Creek Evolution and Vegetation Variation in Silting Muddy Flats on the Yellow Sea. Remote Sens. 2023, 15, 5107. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Z.; Zheng, G.; Zhao, C. Identification of Spartina alterniflora habitat expansion in a Suaeda salsa dominated coastal wetlands. Ecol. Indic. 2022, 145, 109704. [Google Scholar] [CrossRef]
- Lv, Z.; Nunez, K.; Brewer, E.; Runfola, D. Mapping the tidal marshes of coastal Virginia: A hierarchical transfer learning approach. GIScience Remote Sens. 2024, 61, 2287291. [Google Scholar] [CrossRef]
- Dang, K.B.; Nguyen, M.H.; Nguyen, D.A.; Phan, T.T.H.; Giang, T.L.; Pham, H.H.; Nguyen, T.N.; Tran, T.T.V.; Bui, D.T. Coastal wetland classification with deep u-net convolutional networks and sentinel-2 imagery: A case study at the tien yen estuary of vietnam. Remote Sens. 2020, 12, 3270. [Google Scholar] [CrossRef]
- Li, R.; Liu, W.; Yang, L.; Sun, S.; Hu, W.; Zhang, F.; Li, W. DeepUNet: A deep fully convolutional network for pixel-level sea-land segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3954–3962. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Yu, J.; Li, Y.; Guan, B.; Zhou, J.; Ling, Y.; Ma, Y. Distribution of tidal channels in different landscape types in coastal wetlands of the Yellow River estuary. Chin. J. Ecol. 2023, 42, 2218. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Wang, C.; Morgan, G.R.; Morris, J.T. Drone Lidar Deep Learning for Fine-Scale Bare Earth Surface and 3D Marsh Mapping in Intertidal Estuaries. Sustainability 2023, 15, 15823. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Wilkinson, B.; Ifju, P.; Ortega, A. A new algorithm for estimating ground elevation and vegetation characteristics in coastal salt marshes from high-resolution UAV-based LiDAR point clouds. Earth Surf. Process. Landforms 2020, 45, 3687–3701. [Google Scholar] [CrossRef]
- Hladik, C.; Schalles, J.; Alber, M. Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data. Remote Sens. Environ. 2013, 139, 318–330. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Zhang, Y.D.; Pan, C.; Chen, X.; Wang, F. Abnormal breast identification by nine-layer convolutional neural network with parametric rectified linear unit and rank-based stochastic pooling. J. Comput. Sci. 2018, 27, 57–68. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Matthews correlation coefficient (MCC) is more informative than Cohen’s Kappa and Brier score in binary classification assessment. IEEE Access 2021, 9, 78368–78381. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Morrison, E.S.; Bianchi, T.S.; Kenney, W.F.; Brenner, M.; Prince, K.; Williams, S.; Ortals, C.; Cordero, O.; Crotty, S.M.; Angelini, C. Influence of the Keystone Grazer, Sesarma reticulatum, on the Hydrology and Organic Matter Cycling in Salt Marshes of the Southeastern USA. Estuaries Coasts 2024, 47, 994–1011. [Google Scholar] [CrossRef]
Model | ADU-Net (No Attention and Dense Layers) or Vanilla U-Net | ADU-Net (No Dense Layer) | ADU-Net (No Attention Layer) | ADU-Net | |
---|---|---|---|---|---|
Metrics | |||||
F1 Score | 0.947 ± 0.064 | 0.962 ± 0.004 | 0.967 ± 0.001 | 0.980 ± 0.001 | |
Dice Score | 0.947 ± 0.023 | 0.960 ± 0.005 | 0.967 ± 0.001 | 0.980 ± 0.001 | |
User Accuracy | 0.955 ± 0.063 | 0.956 ± 0.003 | 0.967 ± 0.001 | 0.983 ± 0.000 | |
Producer Accuracy | 0.940 ± 0.059 | 0.950 ± 0.004 | 0.968 ± 0.001 | 0.977 ± 0.003 | |
Kappa Coefficient | 0.931 ± 0.031 | 0.996 ± 0.001 | 0.997 ± 0.000 | 0.999 ± 0.000 |
Kernel Size, k = | ||||||||
---|---|---|---|---|---|---|---|---|
Model | ||||||||
Metrics | ||||||||
F1 Score | 0.965 ± 0.003 | 0.982 ± 0.001 | 0.971 ± 0.001 | 0.970 ± 0.000 | 0.955 ± 0.030 | 0.974 ± 0.001 | 0.965 ± 0.009 | |
Dice Score | 0.965 ± 0.003 | 0.982 ± 0.001 | 0.971 ± 0.001 | 0.970 ± 0.000 | 0.955 ± 0.030 | 0.974 ± 0.001 | 0.967 ± 0.005 | |
User Accuarcy | 0.967 ± 0.005 | 0.984 ± 0.000 | 0.964 ± 0.063 | 0.968 ± 0.003 | 0.954 ± 0.025 | 0.967 ± 0.002 | 0.952 ± 0.001 | |
Producer Accuracy | 0.964 ± 0.005 | 0.979 ± 0.003 | 0.950 ± 0.059 | 0.972 ± 0.003 | 0.934 ± 0.030 | 0.967 ± 0.002 | 0.950 ± 0.003 | |
Kappa Coefficient | 0.999 ± 0.001 | 0.999 ± 0.000 | 0.945 ± 0.001 | 0.999 ± 0.000 | 0.998 ± 0.000 | 0.999 ± 0.000 | 0.999 ± 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dutt, R.; Ortals, C.; He, W.; Curran, Z.C.; Angelini, C.; Canestrelli, A.; Jiang, Z. A Deep Learning Approach to Segment Coastal Marsh Tidal Creek Networks from High-Resolution Aerial Imagery. Remote Sens. 2024, 16, 2659. https://doi.org/10.3390/rs16142659
Dutt R, Ortals C, He W, Curran ZC, Angelini C, Canestrelli A, Jiang Z. A Deep Learning Approach to Segment Coastal Marsh Tidal Creek Networks from High-Resolution Aerial Imagery. Remote Sensing. 2024; 16(14):2659. https://doi.org/10.3390/rs16142659
Chicago/Turabian StyleDutt, Richa, Collin Ortals, Wenchong He, Zachary Charles Curran, Christine Angelini, Alberto Canestrelli, and Zhe Jiang. 2024. "A Deep Learning Approach to Segment Coastal Marsh Tidal Creek Networks from High-Resolution Aerial Imagery" Remote Sensing 16, no. 14: 2659. https://doi.org/10.3390/rs16142659
APA StyleDutt, R., Ortals, C., He, W., Curran, Z. C., Angelini, C., Canestrelli, A., & Jiang, Z. (2024). A Deep Learning Approach to Segment Coastal Marsh Tidal Creek Networks from High-Resolution Aerial Imagery. Remote Sensing, 16(14), 2659. https://doi.org/10.3390/rs16142659