Research Advances and Prospects of Underwater Terrain-Aided Navigation
Abstract
:1. Introduction
2. Introduction to Underwater TAN
3. Principle of Underwater TAN
3.1. Composition of Two TAN Systems
3.2. Mathematical Model of the TAN System
3.3. TAP in Underwater TAN Systems
4. Main Algorithms Involved in TAP
4.1. TAP Estimation
4.1.1. Terrain Point-Cloud-Based Matching
4.1.2. Image Matching Positioning
4.2. Iterative Filtering Methods for TAN
4.2.1. Kalman Filter and Its Improvements
4.2.2. Posterior Bayesian Estimation and Its Numerical Solution
- (1)
- Particle Filter
- (2)
- Marginalized Particle Filter
5. Other Relevant Technological Advancements
5.1. Prior Digital Elevation Model
5.2. Terrain Adaptability Analysis and Path Planning
5.3. Initial Positioning and Accuracy Evaluation
5.4. Simulation of an Underwater TAN System
6. Conclusions and Outlook
- (1)
- The stability and reliability of filters remain significant challenges, particularly for state estimation in non-Gaussian and nonlinear dynamic systems. Therefore, there is an urgent need to develop robust and reliable filtering algorithms and filters. In addition, filters should possess self-awareness and self-correction capabilities to enhance the generalization performance of the algorithms. For example, the work [97,98] has introduced machine learning into image matching, the work [173] has incorporated intelligent algorithms into Particle Filters (PFs), and the work [75] has proposed data-driven methods that can learn approximate proposal distributions from previous data. These are all good attempts.
- (2)
- With the diversification and refinement of AUV sensing information, there are differences in the granularity, data structures, and physical characteristics of the matching information. This involves matching and assimilating different resolutions, granularities, and data structure information.
- (3)
- The integration of TAN technology with underwater robot planning and control is crucial. The incorporation of TAN information into intelligent decision-making and control systems for AUVs should be explored.
- (4)
- The availability of large-scale, high-precision prior terrain maps remains a major bottleneck in the development of underwater TAN technology. Promising breakthroughs can be achieved through multi-AUV cooperative underwater positioning and terrain mapping techniques, which have the potential to improve the measurement accuracy and efficiency for unknown seafloor terrain. For instance, the work [174] and the work [152] proposed two different strategies for collaborative SLAM techniques involving multiple Autonomous Underwater Vehicles (AUVs).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wynn, R.B.; Huvenne, V.A.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.; Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience. Mar. Geol. 2014, 352, 451–468. [Google Scholar] [CrossRef]
- Wakita, N.; Hirokawa, K.; Ichikawa, T.; Yamauchi, Y. Development of autonomous underwater vehicle (AUV) for exploring deep sea marine mineral resources. Mitsubishi Heavy Ind. Tech. Rev. 2010, 47, 73–80. [Google Scholar]
- Rupeng, W.; Yunsai, C.; Ye, L.; Pengfei, X.; Peng, S. High-precision initialization and acceleration of particle filter convergence to improve the accuracy and stability of terrain aided navigation. ISA Trans. 2021, 110, 172–197. [Google Scholar] [CrossRef] [PubMed]
- Rupeng, W.; Ye, L.; Teng, M.; Zheng, C.; Yusen, G.; Pengfei, X. Improvements to terrain aided navigation accuracy in deep-sea space by high precision particle filter initialization. IEEE Access 2020, 8, 13029–13042. [Google Scholar] [CrossRef]
- Nygren, I. Terrain Navigation for Underwater Vehicles. Ph.D. Thesis, KTH Electrical Engineering, Stockholm, Sweden, 2005. [Google Scholar]
- Wang, J.; Tang, Y.G.; Chen, C.X.; Li, J.X.; Chen, C.; Zhang, A.Q.; Li, Y.P.; Li, S. Terrain matching localization for hybrid underwater vehicle in the Challenger Deep of the Mariana Trench. Front. Inf. Technol. Electron. Eng. 2020, 21, 749–759. [Google Scholar] [CrossRef]
- Mileyko, Y.; Reis, G.; Chyba, M.; Smith, R.N. Energy-efficient control strategies for updating an augmented terrain-based navigation map for autonomous underwater navigation. In Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA), Maui, HI, USA, 27–30 August 2017; pp. 1–9. [Google Scholar]
- Reis, G.M.; Fitzpatrick, M.; Anderson, J.; Kelly, J.; Bobadilla, L.; Smith, R.N. Increasing persistent navigation capabilities for underwater vehicles with augmented terrain-based navigation. Oceans 2017, 6, 1–12. [Google Scholar]
- Salavasidis, G.; Munafò, A.; Harris, C.A.; McPhail, S.D.; Rogers, E.; Phillips, A.B. Towards arctic AUV navigation. In Proceedings of the 11th IFAC Conference on Control Applications in Marine Systems, Robotics, and Vehicles CAMS 2018, Opatija, Croatia, 9–12 September 2018; pp. 287–292. [Google Scholar]
- Claus, B.; Bachmayer, R. Terrain-aided navigation for an underwater glider. J. Field Robot. 2015, 32, 935–951. [Google Scholar] [CrossRef]
- Nakatani, T.; Ura, T.; Sakamaki, T.; Kojima, J. Terrain based localization for pinpoint observation of deep seafloors. In Proceedings of the Oceans 2009 Europe, Bremen, Germany, 11–14 May 2009; pp. 1–6. [Google Scholar]
- Ma, T.; Li, Y.; Gong, Y.; Wang, R.; Sheng, M.; Zhang, Q. AUV bathymetric simultaneous localization and mapping using graph method. J. Navig. 2019, 72, 1602–1622. [Google Scholar] [CrossRef]
- Liarokapis, F.; Kouřil, P.; Agrafiotis, P.; Demesticha, S.; Chmelik, J.; Skarlatos, D. 3D modelling and mapping for virtual exploration of underwater archaeology assets. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 425–431. [Google Scholar] [CrossRef]
- Mindell, D.A. Precision Navigation and Remotes Sensing for Underwaters Archaeology. In Remote Sensing in Archaeology; Springer: Berlin/Heidelberg, Germany, 2007; pp. 499–511. [Google Scholar]
- Henderson, J.; Pizarro, O.; Johnson-Roberson, M.; Mahon, I. Mapping submerged archaeological sites using stereo-vision photogrammetry. Int. J. Naut. Archaeol. 2013, 42, 243–256. [Google Scholar] [CrossRef]
- Ma, T.; Li, Y.; Wang, R.; Cong, Z.; Gong, Y. AUV robust bathymetric simultaneous localization and mapping. Ocean Eng. 2018, 166, 336–349. [Google Scholar] [CrossRef]
- Palomer, A.; Ridao, P.; Ribas, D.; Mallios, A.; Gracias, N.; Vallicrosa, G. Bathymetry-based SLAM with difference of normals point-cloud subsampling and probabilistic ICP registration. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Germany, 10–13 June 2013; pp. 1–8. [Google Scholar]
- Palomer, A.V. Probabilistic ICP for Bathymetry-based SLAM. Master’s Thesis, Universitat de Girona, Girona, Spain, 2013. [Google Scholar]
- Cheng, C.; Wang, C.; Yang, D.; Liu, W.; Zhang, F. Underwater localization and mapping based on multi-beam forward looking sonar. Front. Neurorobotics 2022, 15, 801956. [Google Scholar] [CrossRef] [PubMed]
- Énonsen, K.B.; Hagen, O.K. Recent developments in the HUGIN AUV terrain navigation system. In Proceedings of the OCEANS’11 MTS/IEEE, Kona, HI, USA, 19–22 September 2011; pp. 1–7. [Google Scholar]
- Hagen, O.K.; Ånonsen, K.B.; Skaugen, A. Robust surface vessel navigation using terrain navigation. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Germany, 10–13 June 2013; pp. 1–7. [Google Scholar]
- Hagen, O.K.; Ånonsen, K.B. Using Terrain Navigation to Improve MarineVessel Navigation Systems. Mar. Technol. Soc. J. 2014, 48, 45–58. [Google Scholar] [CrossRef]
- Di Massa, D.E. Terrain-Relative Navigationfor Autonomous Underwater Vehicles. Doctoral Dissertation, Massachusetts Institute of Technology Woods Hole Oceanographic Institution, Woods Hole, MA, USA, June 1997. [Google Scholar]
- Reis, G.M.; Fitzpatrick, M.; Anderson, J.; Bobadilla, L.; Smith, R.N. Augmented terrain-based navigation to enable persistent autonomy for underwater vehicles. In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017; pp. 292–298. [Google Scholar]
- Fitzpatrick, M.; Reis, G.M.; Anderson, J.; Bobadilla, L.; Al Sabban, W.; Smith, R.N. Development of environmental niche models for use in underwater vehicle navigation. IET Cyber-Syst. Robot. 2020, 2, 67–77. [Google Scholar] [CrossRef]
- Stuntz, A.; Liebel, D.; Smith, R.N. Enabling persistent autonomy for underwater gliders through terrain based navigation. In Proceedings of the OCEANS 2015, Genova, Italy, 18–21 May 2015; pp. 1–10. [Google Scholar]
- Liu, Y.; Zhang, G.; Che, C. Underwater Terrain-Aided Navigation Relocation Method in the Arctic. Math. Probl. Eng. 2020, 2020, 6654368. [Google Scholar] [CrossRef]
- Salavasidis, G.; Munafò, A.; McPhail, S.D.; Harris, C.A.; Fenucci, D.; Pebody, M.; Rogers, E.; Phillips, A.B. Terrain-aided navigation with coarse maps—Toward an arctic crossing with an AUV. IEEE J. Ocean Eng. 2021, 46, 1192–1212. [Google Scholar] [CrossRef]
- Salavasidis, G.; Munafò, A.; Fenucci, D.; Harris, C.A.; Prampart, T.; Templeton, R.; Smart, M.; Roper, D.T.; Pebody, M.; Povl Abrahamsen, E.; et al. Terrain-aided navigation for long-range AUVs in dynamic under-mapped environments. J. Field Robot. 2021, 38, 402–428. [Google Scholar] [CrossRef]
- Salavasidis, G.; Munafo, A.; Harris, C.A.; Prampart, T.; Templeton, R.; Smart, M.; Roper, D.T.; Pebody, M.; McPhail, S.D.; Rogers, E.; et al. Terrain-aided navigation for long-endurance and deep-rated autonomous underwater vehicles. J. Field Robot. 2018, 36, 447–474. [Google Scholar] [CrossRef]
- Claus, B.; Bachmayer, R. Towards online terrain aided navigation of underwater gliders. In Proceedings of the 2014 IEEE/OES Autonomous Underwater Vehicles (AUV), Oxford, MS, USA, 6–9 October 2014; pp. 1–5. [Google Scholar]
- Li, Z.; Zheng, W.; Wu, F. Geodesic-based method for improving matching efficiency of underwater terrain matching navigation. Sensors 2019, 19, 2709. [Google Scholar] [CrossRef] [PubMed]
- Bandara, D.; Leong, Z.; Nguyen, H.; Jayasinghe, S.; Forrest, A.L. Technologies for under-ice AUV navigation. In Proceedings of the 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 6–9 November 2016; pp. 108–114. [Google Scholar]
- Gao, X.; Ding, K.; Ren, Y.G.; Fu, W.T.; Ding, Z.J.; Zhao, S.Y.; Liu, B.H. Target deployment and retrieval using JIAOLONG manned submersible in the depth of 6600 m in Mariana trench. China Ocean Eng. 2017, 31, 618–623. [Google Scholar] [CrossRef]
- Meduna, D.K. Terrain Relative Navigation for Sensor-Limited Systems with Application to Underwater Vehicles. Ph.D. Thesis, Stanford University, Stanford, CA, USA, 2011. [Google Scholar]
- Menna, F.; Agrafiotis, P.; Georgopoulos, A. State of the art and applications in archaeological underwater 3D recording and mapping. J. Cult. Herit. 2018, 33, 231–248. [Google Scholar] [CrossRef]
- Violante, C. Acoustic remote sensing for seabed archaeology. In Proceedings of the IMEKO TC4 International Conference on Metrology for Archaeology and Cultural Heritage, Trento, Italy, 22–24 October 2020. [Google Scholar]
- Johnson-Roberson, M.; Bryson, M.; Friedman, A.; Pizarro, O.; Troni, G.; Ozog, P.; Henderson, J.C. High-resolution underwater robotic vision-based mapping and three-dimensional reconstruction for archaeology. J. Field Robot. 2017, 34, 625–643. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, W.; Wu, F. Improving the reliability of underwater gravity matching navigation based on a priori recursive iterative least squares mismatching correction method. IEEE Access 2020, 8, 8648–8657. [Google Scholar] [CrossRef]
- Teixeira, F.C. Novel Approaches to Geophysical Navigation of Autonomous Underwater Vehicles. In Proceedings of the International Conference on Computer Aided Systems Theory, Las Palmas de Gran Canaria, Spain, 10–15 February 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 349–356. [Google Scholar]
- Lorenz, R.D. Planetary landings with terrain sensing and hazard avoidance: A review. Adv. Space Res. 2023, 71, 1–15. [Google Scholar] [CrossRef]
- Song, J.; Rondao, D.; Aouf, N. Deep learning-based spacecraft relative navigation methods: A survey. Acta Astronaut. 2022, 191, 22–40. [Google Scholar] [CrossRef]
- Qin, J.; Li, M.; Li, D.; Zhong, J.; Yang, K. A survey on visual navigation and positioning for autonomous UUVs. Remote Sens. 2022, 14, 3794. [Google Scholar] [CrossRef]
- Johnson, A.E.; Cheng, Y.; Trawny, N.; Montgomery, J.F.; Schroeder, S.; Chang, J.; Clouse, D.; Aaron, S.; Mohan, S. Implementation of a Map Relative Localization System for Planetary Landing. J. Guid. Control Dyn. 2023, 46, 618–637. [Google Scholar] [CrossRef]
- Johnson, A.; Aaron, S.; Chang, J.; Cheng, Y.; Montgomery, J.; Mohan, S.; Schroeder, S.; Tweddle, B.; Trawny, N.; Zheng, J.; et al. The lander vision system for mars 2020 entry descent and landing. Guid. Navig. Control 2017, 2017, 159. [Google Scholar]
- Hagen, O.K.; Hagen, P.E.; Bovio, E.; Tyce, R.; Schmidt, H. Terrain referenced integrated navigation system for underwater vehicles. In SACLANTCEN Conference Proceedings; NATO SACLANT Undersea Research Centre: La Spezia, Italy, 2000; pp. 171–180. [Google Scholar]
- Hagen, O.K. TerrLab—A generic simulation and post-processing tool for terrain referenced navigation. In Proceedings of the OCEANS 2006, Boston, MA, USA, 18–21 September 2006; pp. 1–7. [Google Scholar]
- Chen, P.; Li, Y.; Su, Y.; Chen, X. The improved Kriging interpolation algorithm for local underwater terrain based on fractal compensation. Math. Probl. Eng. 2014, 2014, 289521. [Google Scholar] [CrossRef]
- Li, Y.; Wang, R.; Chen, P.; Shen, P.; Jiang, Y. Terrain matching positioning method based on node multi-information fusion. J. Navig. 2017, 70, 82–100. [Google Scholar] [CrossRef]
- Li, Y.; Ma, T.; Chen, P.; Jiang, Y.; Wang, R.; Zhang, Q. Autonomous underwater vehicle optimal path planning method for seabed terrain matching navigation. Ocean Eng. 2017, 133, 107–115. [Google Scholar] [CrossRef]
- Anonsen, K.B.; Hallingstad, O. Terrain aided underwater navigation using point mass and particle filters. In Proceedings of the IEEE/ION PLANS 2006, San Diego, CA, USA, 25–27 April 2006; pp. 1027–1035. [Google Scholar]
- Teixeira, F.C.; Quintas, J.; Maurya, P.; Pascoal, A. Robust particle filter formulations with application to terrain-aided navigation. Int. J. Adapt. Control Signal Process. 2017, 31, 608–651. [Google Scholar] [CrossRef]
- Teng, M.; Ye, L.; Yuxin, Z.; Yanqing, J.; Qianyi, Z.; Pascoal, A.M. Efficient bathymetric SLAM with invalid loop closure identification. IEEE/ASME Trans. Mechatron. 2020, 26, 2570–2580. [Google Scholar] [CrossRef]
- Wang, R.; Li, Y.; Teng, M.; Zheng, C.; Gong, Y. Underwater digital elevation map gridding method based on optimal partition of suitable matching area. Int. J. Adv. Robot. Syst. 2019, 16, 268–283. [Google Scholar]
- Chen, P.; Shen, P.; Zhang, P.; Li, Y.; Ma, T.; Han, Y. Path planning of underwater terrain-aided navigation based on improved artificial potential field method. Mar. Technol. Soc. J. 2019, 53, 65–74. [Google Scholar] [CrossRef]
- Ma, D.; Ma, T.; Li, Y.; Ling, Y.; Ben, Y. A contour-based path planning method for terrain-aided navigation systems with a single beam echo sounder. Measurement 2024, 226, 114089. [Google Scholar] [CrossRef]
- Ma, D.; Ma, T.; Li, Y.; Ling, Y.; Ben, Y. A robust fusion terrain-aided navigation method with a single Beam Echo Sounder. Ocean Eng. 2023, 286, 115610. [Google Scholar] [CrossRef]
- Meduna, D.K.; Rock, S.M.; Mcewen, R.S. Closed-loop terrain relative navigation for AUVs with non-inertial grade navigation sensors. In Proceedings of the IEEE/OES Autonomous Underwater Vehicles, Monterey, CA, USA, 1–3 September 2011; pp. 1–10. [Google Scholar]
- Izadi, S.; Kim, D.; Hilliges, O.; Molyneaux, D.; Newcombe, R.; Kohli, P.; Shotton, J.; Hodges, S.; Freeman, D. Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera. In Proceedings of the 24th Annual ACM symposium on User Interface Software and Technology, Santa Barbara, CA, USA, 16–19 October 2011; pp. 559–568. [Google Scholar]
- Bruno, F.; Bianco, G.; Muzzupappa, M.; Barone, S.; Razionale, A.V. Experimentation of structured light and stereo vision for underwater 3D reconstruction. ISPRS J. Photogramm. Remote Sens. 2011, 66, 508–518. [Google Scholar] [CrossRef]
- Chantler, M.J.; Clark, J.; Umasuthan, M. Calibration and operation of an underwater laser triangulation sensor: The varying baseline problem. Opt. Eng. 1997, 36, 2604–2611. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Zhang, T. Multipath parallel ICCP underwater terrain matching algorithm based on multibeam bathymetric data. IEEE Access 2018, 8, 48708–48715. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Li, M. Improved ICCP algorithm considering scale error for underwater geomagnetic aided inertial navigation. Math. Probl. Eng. 2019, 2019, 1527940. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, T.; Zhang, C.; Yao, Y. An improved ICCP-based underwater terrain matching algorithm for large initial position error. IEEE Sens. J. 2022, 22, 16381–16391. [Google Scholar] [CrossRef]
- Zhao, L.; Gao, N.; Huang, B.; Wang, Q.; Zhou, J. A novel terrain-aided navigation algorithm combined with the TERCOM algorithm and particle filter. IEEE Sens. J. 2015, 15, 1124–1131. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T.; Xu, C.; Zhang, W.; Shen, J. Marginalized point mass filter with estimating tidal depth bias for underwater terrain-aided navigation. J. Sens. 2019, 2019, 7340130. [Google Scholar] [CrossRef]
- Park, Y.G.; Park, C.G. Grid support adaptation for point mass filter based terrain referenced navigation using mutual information. IEEE Sens. J. 2018, 18, 7603–7610. [Google Scholar] [CrossRef]
- Duník, J.; Matoušek, J.; Straka, O. Design of Efficient Point-Mass Filter for Linear and Nonlinear Dynamic Models. IEEE Control Syst. Lett. 2023, 7, 2005–2010. [Google Scholar] [CrossRef]
- Matoušek, J.; Duník, J.; Brandner, M. Design of Efficient Point-Mass Filter with Application in Terrain Aided Navigation. arXiv 2023, arXiv:2303.05100. [Google Scholar]
- Duník, J.; Soták, M.; Veselý, M. Design of Rao–Blackwellized point-mass filter with application in terrain aided navigation. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 1–10. [Google Scholar] [CrossRef]
- Wan, X.; Wang, H.; Jia, Y.; Ma, W. Performance of Haiyang-2 Derived Gravity Field Products in Bathymetry Inversion. Remote Sens. 2022, 15, 32. [Google Scholar] [CrossRef]
- Hostetler, L.; Andreas, R. Nonlinear Kalman filtering techniques for terrain-aided navigation. IEEE Trans. Autom. Control 1983, 28, 315–323. [Google Scholar] [CrossRef]
- Anonsen, K.B.; Hallingstad, O. Sigma point Kalman filter for underwater terrain-based navigation. IFAC Proc. Vol. 2007, 40, 106–110. [Google Scholar] [CrossRef]
- Elfring, J.; Torta, E.; van de Molengraft, R. Particle filters: A hands-on tutorial. Sensors 2021, 21, 438. [Google Scholar] [CrossRef] [PubMed]
- Melo, J.; Matos, A. A data-driven particle filter for terrain based navigation of sensor-limited autonomous underwater vehicles. Asian J. Control 2019, 7, 1659–1670. [Google Scholar] [CrossRef]
- Chen, P.; Chang, J.; Han, Y.; Yuan, M. Underwater terrain-aided navigation method based on improved Gaussian sum particle filtering. Int. J. Adv. Robot. Syst. 2019, 16, 1–7. [Google Scholar] [CrossRef]
- Peng, D.; Zhou, T.; Folkesson, J.; Xu, C. Robust particle filter based on Huber function for underwater terrain-aided navigation. IET Radar Sonar Navig. 2019, 13, 1867–1875. [Google Scholar] [CrossRef]
- Zhou, T.; Peng, D.; Xu, C.; Zhang, W.; Shen, J. Adaptive particle filter based on Kullback–Leibler distance for underwater terrain aided navigation with multi-beam sonar. IET Radar Sonar Navig. 2018, 12, 433–441. [Google Scholar] [CrossRef]
- Karlsson, R.; Gustafsson, F. Particle filter for underwater terrain navigation. In Proceedings of the IEEE Workshop on Statistical Signal Processing, St. Louis, MO, USA, 28 September–1 October 2003; pp. 526–529. [Google Scholar]
- Melo, J.; Matos, A. On the use of particle filters for terrain based navigation of sensor-limited AUVs. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Germany, 10–13 June 2013; pp. 1–8. [Google Scholar]
- Kim, T.; Kim, J.; Byun, S.W. A comparison of nonlinear filter algorithms for terrain-referenced underwater navigation. Int. J. Control Autom. Syst. 2018, 16, 2977–2989. [Google Scholar] [CrossRef]
- Casagrande, D.; Krasnosky, K.; Roman, C. Localization of a drifting underwater vehicle using a terrain-based particle filter. In Proceedings of the OCEANS 2019 MTS/IEEE, Seattle, WA, USA, 27–31 October 2019; pp. 1–8. [Google Scholar]
- Palmier, C.; Dahia, K.; Merlinge, N.; Del Moral, P.; Laneuville, D.; Musso, C. Adaptive approximate bayesian computational particle filters for underwater terrain aided navigation. In Proceedings of the 22nd International Conference on Information Fusion (FUSION), Ottawa, ON, Canada, 2–5 July 2019; pp. 1–8. [Google Scholar]
- Zhou, T.; Wang, T.; Gao, J.; Guo, Q.; Yan, Z. Particle filter underwater terrain-aided navigation based on gradient fitting. Meas. Sci. Technol. 2022, 33, 105009. [Google Scholar] [CrossRef]
- Wang, K.; Zhu, T.; Qin, Y.; Jiang, R.; Li, Y. Matching error of the iterative closest contour point algorithm for terrain-aided navigation. Aerosp. Sci. Technol. 2018, 73, 210–222. [Google Scholar] [CrossRef]
- Arun, K.S.; Huang, T.S.; Blostein, S.D. Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 1987, 9, 698–700. [Google Scholar] [CrossRef]
- Wenberg, D. Method for Kalman Filtering Pose Estimates from Lidar Scans During the Landing Phase. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, September 2021. [Google Scholar]
- Clotet, E.; Palacín, J. SLAMICP Library: Accelerating Obstacle Detection in Mobile Robot Navigation via Outlier Monitoring following ICP Localization. Sensors 2023, 23, 6841. [Google Scholar] [CrossRef]
- Charalampous, K.; Kostavelis, I.; Chrysostomou, D.; Amanatiadis, A.; Gasteratos, A. 3D maps registration and path planning for autonomous robot navigation. arXiv 2013, arXiv:1312.2822. [Google Scholar]
- Wu, Z.; Wang, Y.; Pei, Z.; Wang, P.; He, B.; Zhu, L. An improved matching algorithm for the underwater navigation. In Proceedings of the International Conference on Control, Decision and Information Technologies, Thessaloniki, Grece, 10–13 April 2018; pp. 230–245. [Google Scholar]
- Li, P.; Sheng, G.; Zhang, X.; Wu, J.; Xu, B.; Liu, X.; Zhang, Y. Underwater terrain-aided navigation system based on combination matching algorithm. ISA Trans. 2018, 7, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Bian, H.; Zielinski, A. Underwater terrain-aided navigation based on multibeam bathymetric sonar images. J. Mar. Sci. Appl. 2015, 14, 425–433. [Google Scholar] [CrossRef]
- Song, Z.; Bian, H.; Zielinski, A. Application of acoustic image processing in underwater terrain aided navigation. Ocean Eng. 2016, 121, 279–290. [Google Scholar] [CrossRef]
- Oliveira, A.J.; Ferreira, B.M.; Cruz, N.A. A performance analysis of feature extraction algorithms for acoustic image-based underwater navigation. J. Mar. Sci. Eng. 2021, 9, 361. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, C.; Yuan, X.; Luo, C. A matching algorithm for underwater acoustic and optical images based on image attribute transfer and local features. Sensors 2021, 21, 7043. [Google Scholar] [CrossRef]
- Almanza-Medina, J.E.; Henson, B.T.; Zakharov, Y.V. Imaging sonar simulator for assessment of image registration techniques. In Proceedings of the OCEANS 2019 MTS/IEEE, Seattle, WA, USA, 27–31 October 2019; pp. 1–7. [Google Scholar]
- Almanza-Medina, J.E. Underwater Motion Estimation Based on Acoustic Images and Deep Learning. Ph.D. Thesis, University of York, Heslington, UK, April 2022. [Google Scholar]
- Almanza-Medina, J.E.; Henson, B.; Zakharov, Y.V. Deep learning architectures for navigation using forward looking sonar images. IEEE Access 2021, 9, 33880–33896. [Google Scholar] [CrossRef]
- Patel, R.C. Three-Dimensional Underwater Acoustic Image Interpretation for ROV Navigation. Ph.D. Thesis, University College London, London, UK, 2003. [Google Scholar]
- Carrasco, P.L.N.; Bonin-Font, F.; Campos, M.M.; Codina, G.O. Stereo-vision graph-SLAM for robust navigation of the AUV SPARUS II. IFAC-PapersOnLine 2015, 48, 200–205. [Google Scholar] [CrossRef]
- Pi, S.; He, B.; Zhang, S.; Nian, R.; Shen, Y.; Yan, T. Stereo visual SLAM system in underwater environment. In Proceedings of the OCEANS 2014, Taipei, Taiwan, 7–10 April 2014; pp. 1–5. [Google Scholar]
- Bayat, M.; Aguiar, A.P. SLAM for an AUV using vision and an acoustic beacon. IFAC Proc. Vol. 2010, 43, 503–508. [Google Scholar] [CrossRef]
- Roman, C.; Mather, R. Autonomous underwater vehicles as tools for deep-submergence archaeology. Proc. Inst. Mech. Eng. Part M J. Eng. Marit. Environ. 2010, 224, 327–340. [Google Scholar] [CrossRef]
- Yoerger, D.R.; Jakuba, M.; Bradley, A.M.; Bingham, B. Techniques for deep sea near bottom survey using an autonomous underwater vehicle. In Robotics Research: Results of the 12th International Symposium ISRR; Springer: Berlin/Heidelberg, Germany, 2007; pp. 416–429. [Google Scholar]
- Bingham, B.; Foley, B.; Singh, H.; Camilli, R.; Delaporta, K.; Eustice, R.; Mallios, A.; Mindell, D.; Roman, C.; Sakellariou, D. Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle. J. Field Robot. 2010, 27, 702–717. [Google Scholar] [CrossRef]
- Olson, C.F.; Matthies, L.H.; Wright, J.R.; Li, R.; Di, K. Visual terrain mapping for Mars exploration. Comput. Vis. Image Underst. 2007, 105, 73–85. [Google Scholar] [CrossRef]
- Helmick, D.M.; Angelova, A.; Livianu, M.; Matthies, L.H. Terrain adaptive navigation for Mars rovers. In Proceedings of the 2007 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2007; pp. 1–11. [Google Scholar]
- Cheng, Y.; Johnson, A.; Matthies, L. MER-DIMES: A planetary landing application of computer vision. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; pp. 806–813. [Google Scholar]
- Wang, A.; Wang, L.; Zhang, Y.; Hua, B.; Li, T.; Liu, Y.; Lin, D. Landing site positioning and descent trajectory reconstruction of Tianwen-1 on Mars. Astrodynamics 2022, 6, 69–79. [Google Scholar] [CrossRef]
- Bergem, O. Bathymetric Navigation of Autonomous Underwater Vehicles Using a Multibeam Sonar and a Kalman Filter with Relative Measurement Covariance Matrices. Ph.D. Thesis, University of Trondheim, Trondheim, Norway, December 1993. [Google Scholar]
- Mok, S.H.; Bang, H. Terrain slope estimation methods using the least squares approach for terrain referenced navigation. Int. J. Aeronaut. Space Sci. 2013, 14, 85–90. [Google Scholar] [CrossRef]
- Lang, A. Estimation Methods for Terrain Navigation. Master’s Thesis, Royal Institute of Technology, Stockholm, Sweden, 2006. [Google Scholar]
- Královec, J.; Šimandl, M. Filtering, prediction and smoothing with point-mass approach. IFAC Proc. Vol. 2004, 37, 375–380. [Google Scholar] [CrossRef]
- Bergman, N. Recursive Bayesian Estimation Navigation and Tracking Applications. Doctoral Dissertation, Linkoping University, Linkoping, Sweden, 1999. [Google Scholar]
- Ånonsen, K.; Hagen, O.K. An analysis of real-time terrain aided navigation results from a HUGIN AUV. In Proceedings of the IEEE/ION Oceans 2010 Conference, Seattle, WA, USA, 20–23 September 2010; pp. 1–7. [Google Scholar]
- Jalving, B.; Gade, K.; Hagen, O.K.; Vestgard, K. A toolbox of aiding techniques for the HUGIN AUV integrated inertial navigation system. In Proceedings of the OCEANS 2003. Celebrating the Past…Teaming Toward the Future (IEEE Cat. No. 03CH37492), San Diego, CA, USA, 22–26 September 2003; pp. 1146–1153. [Google Scholar]
- Hong, K.; Kim, Y.; Bang, H. Comparison of solutions for measurement ambiguity in terrain referenced navigation. In Proceedings of the Navigation Conference, Lausanne, Switzerland, 9–12 May 2017; pp. 1–11. [Google Scholar]
- Melo, J.; Matos, A. Survey on advances on terrain based navigation for autonomous underwater vehicles. Ocean Eng. 2017, 139, 250–264. [Google Scholar] [CrossRef]
- Abhilash, C. Terrain Aided Navigation for Autonomous Underwater Vehicles with Local Gaussian Processes. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2017. [Google Scholar]
- Ge, J.; Cheng, J.; Qi, B. A Non-Rigid Terrain Transformation Particle Filter Suitable for Terrain-Aided Navigation without Sound Velocity Profile. Ocean Eng. 2024, 294, 116858. [Google Scholar] [CrossRef]
- Bucy, R.S.; Senne, K.D. Digital synthesis of non-linear filters. Automatica 1971, 7, 287–298. [Google Scholar] [CrossRef]
- Ånonsen, K.B.; Hallingstad, O.; Hagen, O.; Mandt, M. Terrain aided AUV navigation—A comparison of the point mass filter and terrain contour matching algorithms. In Proceedings of the UDT Europe, Amsterdam, The Netherlands, 21–23 June 2005. [Google Scholar]
- Zhou, L.; Cheng, X.; Zhu, Y.; Dai, C.; Fu, J. An effective terrain aided navigation for low-cost autonomous underwater vehicles. Sensors 2017, 17, 680. [Google Scholar] [CrossRef]
- Sung, C.K.; Lee, S.J. Moment matched gaussian kernel and region representative likelihood for performance improvement of PMF-based TRN. Int. J. Control Autom. Syst. 2020, 18, 239–251. [Google Scholar] [CrossRef]
- Wan, X.; Ran, J.; Jin, S. Sensitivity analysis of gravity anomalies and vertical gravity gradient data for bathymetry inversion. Mar. Geophys. Res. 2019, 40, 87–96. [Google Scholar] [CrossRef]
- Wan, X.; Liu, B.; Sui, X.; Annan, R.F.; Hao, R.; Min, Y. Bathymetry inversion using the deflection of the vertical: A case study in South China Sea. Geod. Geodyn. 2022, 13, 492–502. [Google Scholar] [CrossRef]
- Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation—GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences 2018, 8, 63. [Google Scholar] [CrossRef]
- Caress, D.W.; Thomas, H.; Kirkwood, W.J.; McEwen, R.; Henthorn, R.; Clague, D.A.; Paull, C.K.; Paduan, J.; Maier, K.L.; Reynolds, J.R.; et al. High-resolution multibeam, sidescan, and subbottom surveys using the MBARI AUV D. Allan B. In Marine Habitat Mapping Technology for Alaska; Alaska Sea Grant: Fairbanks, AK, USA, 2008; pp. 47–69. [Google Scholar]
- Stateczny, A.; Błaszczak-Bąk, W.; Sobieraj-Żłobińska, A.; Motyl, W.; Wisniewska, M. Methodology for processing of 3D multibeam sonar big data for comparative navigation. Remote Sens. 2019, 11, 2245. [Google Scholar] [CrossRef]
- Xu, S.; Ma, T.; Li, Y.; Ding, S.; Gao, J.; Xia, J.; Qi, H.; Gu, H. An effective stereo SLAM with high-level primitives in underwater environment. Meas. Sci. Technol. 2023, 34, 105405. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Ma, T.; Cong, Z.; Zhang, W. Bathymetric particle filter SLAM with graph-based trajectory update method. IEEE Access 2021, 9, 85464–85475. [Google Scholar] [CrossRef]
- Ling, Y.; Li, Y.; Ma, T.; Cong, Z.; Xu, S.; Li, Z. Active Bathymetric SLAM for autonomous underwater exploration. Appl. Ocean. Res. 2023, 130, 103439. [Google Scholar] [CrossRef]
- Palomer, A.; Ridao, P.; Ribas, D. Multibeam 3D underwater SLAM with probabilistic registration. Sensors 2016, 16, 560. [Google Scholar] [CrossRef]
- Norgren, P.; Skjetne, R. A multibeam-based SLAM algorithm for iceberg mapping using AUVs. IEEE Access 2018, 6, 26318–26337. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J. Panel-based bathymetric SLAM with a multibeam echosounder. In Proceedings of the 2017 IEEE Underwater Technology (UT), Busan, Republic of Korea, 21–24 February 2017; pp. 1–5. [Google Scholar]
- Zandara, S.; Ridao, P.; Ribas, D.; Mallios, A.; Palomer, A. Probabilistic surface matching for bathymetry based SLAM. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 40–45. [Google Scholar]
- Haraldstad, V. A Side-Scan Sonar Based Simultaneous Localization and Mapping Pipeline for Underwater Vehicles. Master’s Thesis, NTNU, Trondheim, Norway, 2023. [Google Scholar]
- Ozog, P. Advances in Simultaneous Localization and Mapping in Confined Underwater Environments Using Sonar and Optical Imaging. Ph.D. Thesis, University of Michigan, Ann Arbor, MI, USA, 2016. [Google Scholar]
- Larsen, M.K. Terrain-Based Navigation for Unmanned Underwater Vehicles Using Visual Simultaneous Localization and Mapping. Master’s Thesis, NTNU, Trondheim, Norway, 2021. [Google Scholar]
- Guth, F.; Silveira, L.; Botelho, S.; Drews, P.; Ballester, P. Underwater SLAM: Challenges, state of the art, algorithms and a new biologically-inspired approach. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paolo, Brazil, 12–15 August 2014; pp. 981–986. [Google Scholar]
- Palomer, A.; Ridao, P.; Forest, J.; Ribas, D. Underwater Laser Scanner: Ray-Based Model and Calibration. IEEE/ASME Trans. Mechatron. 2019, 24, 1986–1997. [Google Scholar] [CrossRef]
- Roman, C.; Inglis, G.; Rutter, J. Application of structured light imaging for high resolution mapping of underwater archaeological sites. In Proceedings of the OCEANS’10 IEEE, Sydney, Australia, 24–27 May 2010; pp. 1–9. [Google Scholar]
- Yang, Y.; Zheng, B.; Kan, L.Y.; Yu, J.; Wang, J.C. 3D color reconstruction based on underwater RGB laser line scanning system. Optik 2014, 125, 6074–6077. [Google Scholar] [CrossRef]
- Han, G.; Gong, A.; Wang, H.; Martínez-García, M.; Peng, Y. Multi-AUV collaborative data collection algorithm based on Q-learning in underwater acoustic sensor networks. IEEE Trans. Veh. Technol. 2021, 70, 9294–9305. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Shen, Y.; Wang, T.; Dai, N.; He, B. Multi-AUV cooperative search method based on dynamic optimal coverage. Ocean Eng. 2023, 288, 116168. [Google Scholar] [CrossRef]
- Ma, X.; Yanli, C.; Bai, G.; Liu, J. Multi-AUV collaborative operation based on time-varying navigation map and dynamic grid model. IEEE Access 2020, 8, 159424–159439. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, W.; Li, Y.; Zhao, Y.; Zhang, Q.; Mei, X.; Fan, J. Communication-constrained cooperative bathymetric simultaneous localisation and mapping with efficient bathymetric data transmission method. J. Navig. 2022, 75, 1000–1016. [Google Scholar] [CrossRef]
- Wang, Q.; He, B.; Zhang, Y.; Yu, F.; Huang, X.; Yang, R. An autonomous cooperative system of multi-AUV for underwater targets detection and localization. Eng. Appl. Artif. Intell. 2023, 121, 105907. [Google Scholar] [CrossRef]
- Häusler, A.J.; Saccon, A.; Pascoal, A.M.; Hauser, J.; Aguiar, A.P. Cooperative AUV motion planning using terrain information. In Proceedings of the 2013 MTS/IEEE OCEANS, Bergen, Germany, 10–13 June 2013; pp. 1–10. [Google Scholar]
- Tan, Y.T.; Chitre, M.; Hover, F.S. Cooperative bathymetry-based localization using low-cost autonomous underwater vehicles. Auton. Robot. 2016, 40, 1187–1205. [Google Scholar] [CrossRef]
- Paull, L.; Huang, G.; Seto, M.; Leonard, J.J. Communication-constrained multi-AUV cooperative SLAM. In Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015; pp. 509–516. [Google Scholar]
- Matsuda, T.; Maki, T.; Sato, Y.; Sakamaki, T.; Ura, T. Alternating landmark navigation of multiple AUVs for wide seafloor survey: Field experiment and performance verification. J. Field Robot. 2018, 35, 359–395. [Google Scholar] [CrossRef]
- Al-Tawil, B.; Hempel, T.; Abdelrahman, A.; Al-Hamadi, A. A review of visual SLAM for robotics: Evolution, properties, and future applications. Front. Robot. AI 2024, 11, 1347985. [Google Scholar] [CrossRef]
- McAllister, M. The Problem with ‘Digital Realism’ in underwater archaeology: Photogrammetric digital 3D visualization and interpretation. J. Marit. Archaeol. 2021, 16, 253–275. [Google Scholar] [CrossRef]
- Bräuer-Burchardt, C.; Munkelt, C.; Bleier, M.; Heinze, M.; Gebhart, I.; Kühmstedt, P.; Notni, G. Underwater 3D scanning system for cultural heritage documentation. Remote Sens. 2023, 15, 1864. [Google Scholar] [CrossRef]
- Bodenmann, A.; Thornton, B.; Nakajima, R.; Ura, T. Methods for quantitative studies of seafloor hydrothermal systems using 3D visual reconstructions. Robomech. J. 2017, 4, 1–9. [Google Scholar] [CrossRef]
- Kotaro, Y.; Torres, R.; Castro, F. Multi-image photogrammetry to record and reconstruct underwater shipwreck sites. J. Archaeol. Method Theory 2017, 24, 703–725. [Google Scholar]
- Gu, L.; Chen, W.; Hu, X.; Tong, Z.; Shao, X. Refraction correction for deep-water three-dimensional visual measurement based on multi-objective optimization. Opt. Express 2023, 31, 31383–31396. [Google Scholar] [CrossRef]
- Jin, S.; Wang, H.; Zhu, X. A fast underwater calibration method based on vanishing point optimization of two orthogonal parallel lines. Measurement 2021, 178, 109305. [Google Scholar]
- James, S.; Smart, M.; Waslander, S.L. Underwater stereo SLAM with refraction correction. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3–7 November 2013. [Google Scholar]
- Bonin-Font, F.; Cosic, A.; Negre, P.L.; Solbach, M.; Oliver, G. Stereo SLAM for robust dense 3D reconstruction of underwater environments. In Proceedings of the OCEANS 2015, Genova, Italy, 18–21 May 2015. [Google Scholar]
- Wang, K.; Zhu, T.; Wang, J. Impact of terrain factors on the matching performance of terrain-aided navigation. Navigation 2019, 66, 451–462. [Google Scholar] [CrossRef]
- Teixeira, F.C.; Quintas, J.; Pascoal, A. Robust methods of magnetic navigation of marine robotic vehicles. IFAC-PapersOnLine 2017, 50, 3470–3475. [Google Scholar]
- Wang, R.; Li, Y.; Teng, M.; Zheng, C.; Gong, Y.; Jiang, Y.; Qiang, Z. A new model and method of terrain-aided positioning confidence interval estimation. J. Mar. Sci. Technol. 2021, 27, 1–13. [Google Scholar]
- Xie, Y. Terrain Aided Navigation. Master’s Thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 5 May 2005. [Google Scholar]
- Choi, J.; Park, J.; Jung, J.; Lee, Y.; Choi, H.T. Development of an autonomous surface vehicle and performance evaluation of autonomous navigation technologies. Int. J. Control Autom. Syst. 2020, 18, 535–545. [Google Scholar] [CrossRef]
- Gade, K. NavLab, a Generic Simulation and Post-processing Tool for Navigation. Eur. J. Navig. 2004, 2, 51–59. [Google Scholar] [CrossRef]
- Salavasidis, G.; Harris, C.; McPhail, S.; Phillips, A.B.; Rogers, E. Terrain Aided Navigation for Long Range AUV operations at arctic latitudes. In Proceedings of the 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), Tokyo, Japan, 6–9 November 2016; pp. 115–123. [Google Scholar]
- Hare, R. Depth and Position Error Budgets for Mulitbeam Echosounding. Int. Hydrogr. Rev. 1995, 72. Available online: https://journals.lib.unb.ca/index.php/ihr/article/view/23178 (accessed on 27 May 2024).
- Wang, Y.; Shao, S.; Wang, S.; Wu, Z.; Zhang, H.; Hu, X. Measurement error analysis of multibeam echosounder system mounted on the deep-sea autonomous underwater vehicle. Ocean Eng. 2014, 91, 111–121. [Google Scholar] [CrossRef]
- Mohammadloo, H.T.; Snellen, M.G.; Simons, D. Assessing the performance of the multi-beam echo-sounder bathymetric uncertainty prediction model. Appl. Sci. 2020, 10, 4671. [Google Scholar] [CrossRef]
- Wibowo, W.A.; Wisayantono, D.; Windupranata, W. Analysis of Contributing Components to Depth Error for Multibeam Echosounding. ITB Indones. J. Geospat. 2018, 5, 11–24. [Google Scholar]
- Kang, S.; Yu, M.-J. Ant-mutated immune particle filter design for terrain referenced navigation with interferometric radar altimeter. Remote Sens. 2021, 13, 2189. [Google Scholar] [CrossRef]
- Cong, Z.; Ma, T.; Li, Y.; Yuan, M.; Ling, Y.; Du, H.; Qi, C.; Li, Z.; Xu, S.; Zhang, Q. A Storage-Saving Quadtree-Based Multibeam Bathymetry Map Representation Method. J. Mar. Sci. Eng. 2023, 11, 709. [Google Scholar] [CrossRef]
Task Requirements | Description | References |
---|---|---|
Unknown Seafloor Localization and Map Building | Localization and global terrain mapping by underwater robots in unknown seafloor environments | [16,17,18,19,20] |
Global Positioning System (GPS) Interference/Deception Signal Recognition | Recognition and localization of underwater robots/surface vessels in communication-denied environments or when GPS signals are interfered with or deceived | [5,21,22,23] |
In Situ Observation of Marine Ecological Niches | Detection and mapping of biological communities, ecological niche information, and biotic environmental information in marine spaces | [24,25] |
Spatiotemporal Synchronization Modeling of Oceanic Dynamic Processes | Detection and mapping of the spatial distribution of biological communities, ecological niche information, and biotic environmental information in marine spaces, along with their temporal changes | [8,24,26] |
Crossing the Arctic Ice Cap | Deep-sea ultralong-distance underwater navigation; crossing the Arctic pole, full-length underwater navigation beneath the Arctic ice cap; navigation in the sea area beneath the ice cap | [9,10,27,28,29,30,31,32,33] |
Deployment and Recovery of Deep-Sea Seafloor Sensors/Re-entry into Deep Sea for Mapping | Long-term deployment of observation sensors on the deep-sea seafloor and subsequent retrieval of acquired data; multiple repeated entries into a specific location in the deep sea for mapping purposes | [34] |
Deep-Sea Hovering Localization Observation | Accurate hovering localization during the in situ observation process of deep-sea near-bottom biological communities by remotely operated vehicles (ROVs) | [11] |
Deep-Sea and Abyssal Exploration and Localization | Selection of the Mariana Trench and deep-sea seafloor landing points; localization of deep-sea seafloor equipment deployment and recovery | [6] |
Autonomous Underwater Vehicle (AUV) Waypoint Return and Recovery | Precise localization and navigation of AUVs during the process of returning to designated recovery points | [35] |
Underwater Archaeological Surveying/Robotic Hovering Localization | Utilizing underwater robots equipped with stereo cameras or high-frequency sonar for underwater archaeological site mapping and guiding the underwater robots to perform such tasks as waypoint navigation, point sampling, and multiple re-entries | [13,14,15,36,37,38] |
System Operation Stages | Primary Algorithms | References |
---|---|---|
Initial Positioning (Matching Positioning Algorithm) and Filter Initialization Stage | TERCOM | [5] |
ICP/ICCP | [62,63,64] | |
Confidence Interval Constraint | [4] | |
MTFP | [48] | |
Consistency Check of Positioning Deviation | [65] | |
Initial Alignment Stage | Fast Converging Filtering | [3,48] |
Tracking Filtering Stage | PMF Filtering and Its Improved Algorithms | [66,67,68,69,70,71] |
Nonlinear/Linear Kalman Filtering | [40,72,73] | |
PF Filtering and Its Improved Algorithms | [4,51,52,65,74,75,76,77,78,79,80,81,82,83,84] |
Confidence Interval Estimation Equation | Estimation | Theory Remarks | References |
---|---|---|---|
,, ; , ; represent the gradients of the state transition equation and the measurement equation, respectively. | Posterior Cramer–Rao lower bound | Estimation can be performed recursively | [35] |
represents the variance in terrain measurement errors, and represent the partial derivatives of the terrain surface at the i- directions, respectively. | Cramer–Rao lower bound | Nonrecursive | [5] |
represents the residual sequence of TAP points, is the covariance matrix of terrain measurement errors, and degrees of freedom at a confidence level of represents the number of measurement frames. | Residual statistical hypothesis testing | Nonrecursive | [165] |
represents the lower bound of the likelihood function value of the TAP points at a confidence level of , represents the standard deviation of terrain measurement errors, and represents the sum of squared residuals of the matching residuals at a confidence level of . | Probability point jump model and second-order surface parameter estimation theory | Nonrecursive | [164] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Wang, J.; Li, Y.; Ma, T.; Zhang, X. Research Advances and Prospects of Underwater Terrain-Aided Navigation. Remote Sens. 2024, 16, 2560. https://doi.org/10.3390/rs16142560
Wang R, Wang J, Li Y, Ma T, Zhang X. Research Advances and Prospects of Underwater Terrain-Aided Navigation. Remote Sensing. 2024; 16(14):2560. https://doi.org/10.3390/rs16142560
Chicago/Turabian StyleWang, Rupeng, Jiayu Wang, Ye Li, Teng Ma, and Xuan Zhang. 2024. "Research Advances and Prospects of Underwater Terrain-Aided Navigation" Remote Sensing 16, no. 14: 2560. https://doi.org/10.3390/rs16142560
APA StyleWang, R., Wang, J., Li, Y., Ma, T., & Zhang, X. (2024). Research Advances and Prospects of Underwater Terrain-Aided Navigation. Remote Sensing, 16(14), 2560. https://doi.org/10.3390/rs16142560