Study the Global Earthquake Patterns That Follow the St. Patrick’s Day Geomagnetic Storms of 2013 and 2015
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. A Pattern of Seismic Activity at the Globe after the Magnetic Storms on 17 March 2013 and 2015
3.2. Cases Study for Ten Other Earthquakes with M ≥ 7.5, Which Occurred around the Globe in 2013 and 2015
3.3. Longitudinal Regions of Strong Earthquake Occurrences and Geomagnetic Pole Locations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, R. On the periodic return of the minimum of sunspots: The agreement between those periods and the variations of magnetic declination. Philos. Mag. 1853, 5, 67. [Google Scholar] [CrossRef]
- Parker, E.N. Extension of the solar corona into interplanetary space. J. Geophys. Res. 1959, 64, 1675–1681. [Google Scholar] [CrossRef]
- Anagnostopoulos, G.; Spyroglou, I.; Rigas, A.; Preka-Papadema, P.; Mavromichalaki, H.; Kiosses, I. The Sun as a Significant Agent Provoking Earthquakes. Eur. Phys. J. Spec. Top. 2021, 230, 287–333. [Google Scholar] [CrossRef]
- Simpson, J.F. Solar activity as a triggering mechanism for earthquakes. Earth Planet. Sci. Lett. 1967, 3, 417–425. [Google Scholar] [CrossRef]
- Sytinskij, A.D. Connection of the Earth Seismicity with Solar Activity and Atmospheric Processes; Gidrometeoizdat: Leningrad, Russia, 1987. [Google Scholar]
- Sorokin, V.; Yaschenko, A.; Mushkarev, G.; Novikov, V. Telluric Currents Generated by Solar Flare Radiation: Physical Model and Numerical Estimations. Atmosphere 2023, 14, 458. [Google Scholar] [CrossRef]
- Zeigarnik, V.A.; Bogomolov, L.M.; Novikov, V.A. Electromagnetic Earthquake Triggering: Field Observations, Laboratory Experiments, and Physical Mechanisms—A Review. Izv. Phys. Solid Earth 2022, 58, 30–58. [Google Scholar] [CrossRef]
- Zhang, G.Q. Relationship between global seismicity and solar activities. Acta Seismol. Sin. 1998, 11, 495–500. [Google Scholar] [CrossRef]
- Huzaimy, J.M.; Yumoto, K. Possible correlation between solar activity and global seismicity. In Proceedings of the 2011 IEEE International Conference on Space Science and Communication (IconSpace), Penang, Malaysia, 12–13 July 2011; pp. 138–141. [Google Scholar]
- Shestopalov, I.P.; Kharin, E.P. Secular variations of solar activity and seismicity of the Earth. Geophys. J. 2006, 28, 59–70. [Google Scholar]
- Georgieva, K.; Kirov, B.; Atanasov, D. On the relation between solar activity and seismicity on different time-scales. J. Atmos. Electr. 2002, 22, 291–300. [Google Scholar] [CrossRef]
- Tavares, M.; Azevedo, A. Influence of solar cycles on earthquakes. Nat. Sci. 2011, 3, 436–443. [Google Scholar] [CrossRef]
- Han, Y.B.; Guo, Z.J.; Wu, J.; Ma, L.H. Possible triggering of solar activity to big earthquakes (Ms ≥ 8) in faults with near west-east strike in China. Sci. China Ser. G Phys. Mech. Astron. 2004, 47, 173–181. [Google Scholar] [CrossRef]
- Novikov, V.; Ruzhin, Y.; Sorokin, V.; Yaschenko, A. Space weather and earthquakes: Possible triggering of seismic activity by strong solar flares. Ann. Geophys. 2020, 63, PA554. [Google Scholar] [CrossRef]
- Guglielmi, A.V.; Klain, B.I. On the influence of the Sun on the seismicity of the Earth. Sol. Terr. Phys. 2020, 6, 111–115. [Google Scholar]
- Ouzounov, D.; Khachikyan, G. On the Impact of Geospace Weather on the Occurrence of M7.8/M7.5 Earthquakes on 6 February 2023 (Turkey), Possibly Associated with the Geomagnetic Storm of 7 November 2022. Geosciences 2024, 14, 159. [Google Scholar] [CrossRef]
- Sobolev, G.A. The effect of strong magnetic storms on the occurrence of large earthquakes. Izv. Phys. Solid Earth 2021, 57, 20–36. [Google Scholar] [CrossRef]
- Sobolev, G.A.; Zakrzhevskaya, N.A.; Kharin, E.P. On the relation between seismicity and magnetic storms. Phys. Solid Earth 2001, 37, 917–927. [Google Scholar]
- Urata, N.; Duma, G.; Freund, F. Geomagnetic Kp Index and Earthquakes. Open J. Earthq. Res. 2018, 7, 39–52. [Google Scholar] [CrossRef]
- Chen, H.; Wang, R.; Miao, M.; Liu, X.; Ma, Y.; Hattori, K.; Han, P. A Statistical Study of the Correlation between Geomagnetic Storms and M ≥ 7.0 Global Earthquakes during 1957–2020. Entropy 2020, 22, 1270. [Google Scholar] [CrossRef] [PubMed]
- Marchetti, D.; De Santis, A.; Campuzano, S.A.; Zhu, K.; Soldani, M.; D’arcangelo, S.; Orlando, M.; Wang, T.; Cianchini, G.; Di Mauro, D.; et al. Worldwide Statistical Correlation of Eight Years of Swarm Satellite Data with M5.5+ Earthquakes: New Hints about the Preseismic Phenomena from Space. Remote Sens. 2022, 14, 2649. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Tsurutani, B.T.; Clua de Gonzalea, A.L. Interplanetary origin of geomagnetic storms. Space Sci. Rev. 1999, 88, 529–562. [Google Scholar] [CrossRef]
- Odintsov, S.; Boyarchuk, K.; Georgieva, K.; Kirov, B.; Atanasov, D. Long-period trends in global seismic and geomagnetic activity and their relation to solar activity. Phys. Chem. Earth 2006, 31, 88–93. [Google Scholar] [CrossRef]
- Khachikyan, G.Y.; Zhumabayev, B.T.; Streltsov, A.V. Modification of the Ionosphere by Precursors of Strong Earthquakes. Radio Sci. Bull. 2016, 357, 12–22. Available online: http://www.ursi.org/files/RSBissues/RSB_357_2016_06.pdf (accessed on 1 April 2024).
- Baker, D.N.; Erickson, P.J.; Fennell, J.F.; Foster, J.C.; Jaynes, A.N.; Verronen, P.T. SpaceWeather Effects in the Earth’s Radiation Belts. Space Sci. Rev. 2018, 214, 17. [Google Scholar] [CrossRef]
- Ouzounov, D.; Khachikyan, G. Studying the Impact of the Geospace Environment on Solar Lithosphere Coupling and Earthquake Activity. Remote Sens. 2024, 16, 24. Available online: https://www.researchgate.net/publication/376695174 (accessed on 1 April 2024). [CrossRef]
- Baker, D.N.; Kanekal, S.G.; Horne, R.B.; Meredith, N.P.; Glauert, S.A. Low-altitude measurements of 2–6 MeV electron trapping lifetimes at 1.5 ≤ L ≤ 2.5. Geophys. Res. Lett. 2007, 34, L20110. [Google Scholar] [CrossRef]
- Dungey, J.W. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Lockwood, M.; Smith, M.F. Low- and mid-altitude cusp particle signatures for general magnetopause reconnection rate variations: I. Theory. J. Geophys. Res. 1994, 99, 8531–8555. [Google Scholar] [CrossRef]
- Heikkila, W.J.; Winningham, J.D. Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps. J. Geophys. Res. 1971, 76, 883. [Google Scholar] [CrossRef]
- Frank, L.A. Plasma in the Earth’s polar magnetosphere. J. Geophys. Res. 1971, 76, 5202–5219. [Google Scholar] [CrossRef]
- Pitout, F.; Bogdanova, Y.V. The polar cusp seen by Cluster. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029582. [Google Scholar] [CrossRef]
- Trattner, K.J.; Petrinec, S.M.; Fuselier, S.A. The Location of Magnetic Reconnection at Earth’s Magnetopause. Space Sci. Rev. 2021, 217, 41. [Google Scholar] [CrossRef] [PubMed]
- Escoubet, C.P.; Fehringer, M.; Goldstein, M. The Cluster mission. Ann. Geophys. 2001, 19, 1197–1200. [Google Scholar] [CrossRef]
- Pitout, F.; Escoubet, C.P.; Klecker, B.; Rème, H. Cluster survey of the middle altitude cusp: 1. size, location, and dynamics. Ann. Geophys. 2006, 24, 3011–3026. [Google Scholar] [CrossRef]
- Crooker, N.U. Dayside merging and cusp geometry. J. Geophys. Res. 1979, 84, 951–959. [Google Scholar] [CrossRef]
- Russell, C.T. Polar Eyes the Cusp Cluster-II Workshop: Multiscale/Multipoint Plasma Measurements. In Proceedings of the Workshop Held at Imperial College, London, UK, 22–24 September 1999; European Space Agency (ESA), ESA-SP: Paris, France, 2000; Volume 449, p. 47, ISBN 9290927968. Available online: https://articles.adsabs.harvard.edu//full/2000ESASP.449...47R/0000050.000.html (accessed on 1 April 2024).
- Russell, C.T.; McPherron, R.L. Semi-Annual Variation of Geomagnetic Activity. J. Geophys. Res. 1973, 78, 92–108. [Google Scholar] [CrossRef]
- Zhang, S.-R.; Zhang, Y.; Wang, W.; Verkhoglyadova, O.P. Geospace system responses to the St. Patrick’s Day storms in 2013 and 2015. J. Geophys.Res. Space Phys. 2017, 122, 6901–6906. [Google Scholar] [CrossRef]
- Wu, C.-C.; Liou, K.; Lepping, R.P.; Hutting, L.; Plunkett, S.; Howard, R.A.; Socker, D. The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s Day event March 17ch 2015)”. Earth Planets Space 2016, 68, 1. [Google Scholar] [CrossRef]
- Clilverd, M.A.; Rodger, C.J.; van de Kamp, M.; Verronen, P.T. Electron precipitation from the outer radiation belt during the St. Patrick’s day storm 2015: Observations, modeling, and validation. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027725. [Google Scholar] [CrossRef]
- Shreedevi, P.R.; Choudhary, R.K.; Thampi, S.V.; Yadav, S.; Pant, T.K.; Yu, Y.; McGranaghan, R.; Thomas, E.G.; Bhardwaj, A.; Sinha, A.K. Geomagnetic storm-induced plasma density enhancements in the southern polar ionospheric region: A comparative study using St. Patrick’s Day storms of 2013 and 2015. Space Weather 2020, 18, e2019SW002383. [Google Scholar] [CrossRef]
- Wanliss, J.A.; Showalter, K.M. High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. 2006, 111, A02202. [Google Scholar] [CrossRef]
- Loewe, C.A.; Prolss, G.W. Classification and Mean Behavior of Magnetic Storms. J. Geophys. Res. 1997, 102, 14209. [Google Scholar] [CrossRef]
- Gutenberg, B.; Richter, C. Magnitude and energy of earthquakes. Nature 1955, 176, 795. [Google Scholar] [CrossRef]
- Laundal, K.M.; Richmond, A.D. Magnetic Coordinate Systems. Space Sci. Rev. 2017, 206, 27–59. [Google Scholar] [CrossRef]
- Hayes, G.P.; Myers, E.K.; Dewey, J.W.; Briggs, R.W.; Earle, P.S.; Benz, H.M.; Smoczyk, G.M.; Flamme, H.E.; Barnhart, W.D.; Gold, R.D.; et al. Tectonic Summaries of Magnitude 7 and Greater Earthquakes from 2000 to 2015; Open-File Report 2016-1192; U.S. Geological Survey: Reston, VA, USA, 2017; 148p. [Google Scholar] [CrossRef]
- Ouzounov, D.; Pulinets, S.; Hattori, K.; Taylor, P. (Eds.) Pre-Earthquake Processes: A Multi-Disciplinary Approach to Earthquake Prediction Studies, American Geophysical Union; John Wiley & Sons: Hoboken, NJ, USA, 2018; 385p. [Google Scholar]
- Ouzounov, D.; Pulinets, S.; Davidenko, D.; Rozhnoi, A.; Solovieva, M.; Fedun, V.; Dwivedi, B.N.; Rybin, A.; Kafatos, M.; Taylor, P. Transient Effects in Atmosphere and Ionosphere Preceding the 2015 M7.8 and M7.3 Gorkha–Nepal Earthquakes. Front. Earth Sci. 2021, 9, 757358. [Google Scholar] [CrossRef]
- Miller, S.A. The Role of Fluids in Tectonic and Earthquake Processes. Adv. Geophys. 2013, 54, 1–46. [Google Scholar] [CrossRef]
- Gotynyan, O.E.; Ivchenko, V.M.; Rapoport, Y.G. Model of the internal gravity waves excited by lithospheric greenhouse effect gases. Space Sci. Technol. (“Kosmichna Nauka Tehnologiya”) 2001, 7, 26–33. [Google Scholar] [CrossRef]
Earthquake Date (y–mon–day, Place) | Time UTC | Geographic Latitude | Geographic Longitude | Depth (km) | Magnitude | The Delay between Storm Onset and Earthquake Occurrence (Days) |
---|---|---|---|---|---|---|
The strongest earthquakes responsible for Es peaks in April of 2013 and 2015 | ||||||
2013-04-16 Iran | 10:44:20 | 28.033°N | 61.996°E | 80 | 7.7 | 30 |
2015-04-25 Nepal | 06:11:25 | 28.231°N | 84.731°E | 8.2 | 7.8 | 39 |
The strongest earthquakes responsible for Es peaks in May of 2013 and 2015 | ||||||
2013-05-24 Okhotsk sea | 05:44:48 | 54.892°N | 153.221°E | 598.1 | 8.3 | 68 |
2015-05-30 Japan | 11:23:02 | 27.839°N | 140.493°E | 664.0 | 7.8 | 74 |
# | Data on Geomagnetic Storm (Date, Time of Onset (UT); Maximal Positive and Negative Values of the SYM/H Index (nT) | Data on Strong (M ≥ 7.5) Earthquakes Following the Geomagnetic Storm. (Region, Date, Coordinates, Depth-h km; Magnitude) | The Time Delay between Geomagnetic Storm Onset and Earthquake Occurrence (Days) | Magnetic Local Time (MLT) in the Area of the Future Epicenter in a Moment of Geomagnetic Storm Onset |
---|---|---|---|---|
1 | 2 | 3 | 4 | 5 |
1. | 17 March 2013; 06:04; SYM/H: +33; −132 | Iran, 2013-04-16; 10:44:20; 28.033°N, 61.996°E; h = 80; M7.7 | 30 | 10.48 |
Okhotsk Sea, Russia, 2013-05-24; 05:44:48; 54.892°N, 153.221°E; h = 598; M8.3 | 68 | 15.66 | ||
2. | 17 March 2015, 04:48; SYM/H: +67; −234 | Nepal, 2015-04-25; 06:11:25; 28.231°N, 84.731°E; h = 8.2; M7.8 | 39 | 10.54 |
Japan, 2015-05-30; 11:23:02; 27.839°N, 140.493°E; h = 664; M7.8 | 74 | 13.82 | ||
Papua New Guinea, 2015-03-29; 23:48:31; 4.729°S, 152.562°E; h = 41; M7.5 | 12 | 15.63 | ||
Papua New Guinea, 2015-05-05; 01:44:06; 5.462°S, 151.875°E; h = 55; M7.5 | 49 | 15.57 | ||
3. | 22 June 2015, 18:37; SYM/H: + 88; −208 | Chile, 2015-09-16; 22:54:32; 31.573°S, 71.674°W; h = 22.4; M8.3 | 86 | 14.12 |
24 October 2015, 19:00; SYM/H: + 39 (no geomagnetic storm) | Peru, 2015-11-24; 22:45:38; 10.537°S, 70.944°W; h = 606.2; M7.6 | 31 | 14.52 | |
Peru, 2015-11-24; 22:50:54; 10.060°S, 71.018°W; h = 620.6; M7.6 | 31 | 14.51 | ||
4. | 31 October 2012; 16:52; SYM/H: +35; −68 | Alaska, 2013-01-05; 08:58:14; 55.228°N, 134.859°W; h = 8.7; M7.5 | 66 | 7.15 |
5. | 17 January 2013, 03:00; SYM/H: + 55; −57 | Solomon Islands, 2013-02-06; 01:12:25; 10.799°S, 165.114°E; h = 24; M8.0 | 20 | 14.88 |
6. | 4 August 2013, 06:11; SYM/H: + 24; −56 | Pakistan, 2013-09-24; 11:29:47; 26.951°N, 65.501°E; h = 15; M7.7 | 51 | 10.79 |
7. | 27 August 2013, 16:00; SYM/H: +13; −68 | Scotia Sea, 2013-11-17; 09:04:55; 60.274°S, 46.401°W; h = 10; M7.7 | 82 | 12.72 |
8. | 20 September 2015, 06:18; SYM/H: +3; −84 | Afghanistan, 2015-10-26; 09:09:42; 36.524°N, 70.368°E; h = 231; M7.5 | 36 | 11.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouzounov, D.; Khachikyan, G. Study the Global Earthquake Patterns That Follow the St. Patrick’s Day Geomagnetic Storms of 2013 and 2015. Remote Sens. 2024, 16, 2544. https://doi.org/10.3390/rs16142544
Ouzounov D, Khachikyan G. Study the Global Earthquake Patterns That Follow the St. Patrick’s Day Geomagnetic Storms of 2013 and 2015. Remote Sensing. 2024; 16(14):2544. https://doi.org/10.3390/rs16142544
Chicago/Turabian StyleOuzounov, Dimitar, and Galina Khachikyan. 2024. "Study the Global Earthquake Patterns That Follow the St. Patrick’s Day Geomagnetic Storms of 2013 and 2015" Remote Sensing 16, no. 14: 2544. https://doi.org/10.3390/rs16142544
APA StyleOuzounov, D., & Khachikyan, G. (2024). Study the Global Earthquake Patterns That Follow the St. Patrick’s Day Geomagnetic Storms of 2013 and 2015. Remote Sensing, 16(14), 2544. https://doi.org/10.3390/rs16142544