Annual Dynamics of Shortwave Radiation as Consequence of Smoothing Previously Plowed Bare Arable Land Surface in Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Bare Arable Land Area
2.3. Diurnal Albedo of the Land
- -
- the location of the studied surfaces (latitude and longitude in decimal degree format)
- -
- the date range to be used for calculating the ad values of the studied surfaces
- -
- two roughness indices, namely the standard deviation of their surface height (HSD) and the index, defined as the ratio of the actual surface within the basic unit to its flat horizontal surface (T3D)
2.4. Shortwave Radiation of the Land
3. Results
3.1. Soil Units of the Land
3.2. Shortwave Radiation of the Land
4. Discussion
5. Conclusions
- -
- annual variability of bare arable land areas obtained using Sentinel 2 imagery
- -
- spatial differentiation of the main soil groups of WRB units within the contours of agricultural fields, obtained from digital soil and land cover maps
- -
- annual variability of the average daily albedo of these units, assuming that their surfaces were shaped by a plow (Pd) and a smoothing harrow (Hs), calculated using the specialized SALBEC program on the basis of the reflectance spectra of units stored in the soil LUCAS database
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Bank, Arable Land (% of Land Area). Available online: https://data.worldbank.org/indicator/AG.LND.ARBL.ZS (accessed on 10 January 2024).
- Al-Abbas, A.H.; Swain, P.H.; Baumgardner, M.F. Relating Organic Matter and Clay Content to the Multispectral Radiance of Soils. Soil. Sci. 1972, 114, 477–485. [Google Scholar] [CrossRef]
- Bauer, M.E.; Vanderbilt, V.C.; Robinson, B.P.; Daugtry, C.S.T. Spectral Propertis of Agricultural Crops and Soils Measured Space, Aerial. In Field and Laboratory Sensors; Purdue University: West Lafayette, IN, USA, 1981. [Google Scholar]
- Białousz, S.; Girard, M.G. Wspolczynniki Odbicia Spectralngo Gleb w Pasmach Pracy Satelity Landsat. Fotointerpr. Geogr. 1978, 3, 111–117. (In Polish) [Google Scholar]
- White, J.L. Interpretation of Infrared Spectra of Soil Minerals. Soil Sci. 1971, 112, 22–29. [Google Scholar] [CrossRef]
- Bialousz, S. Zastosowanie Fotointerpretacji Do Wykonywania Map Stosunków Wodnych Gleb. PTG Pr. Kom. Nauk. 1978, 35, 1–143. (In Polish) [Google Scholar]
- Baumgardner, M.; Silva, L.; Biehl, L.; Stoner, E. Reflectance Properties of Soils. Adv. Agron. 1986, 38, 1–44. [Google Scholar]
- Idso, S.B.; Jackson, R.D.; Reginato, R.J.; Kimball, B.A.; Nakayama, F.S. The Dependence of Bare Soil Albedo on Soil Water Content. J. Appl. Meteorol. Climatol. 1975, 14, 109–113. [Google Scholar] [CrossRef]
- Bowers, S.A.; Smith, S.J. Spectrophotometric Determination of Soil Water Content. Soil Sci. Soc. Am. J. 1972, 36, 978–980. [Google Scholar] [CrossRef]
- Cierniewski, J. Soil Moisture Tension and Soil Spectra Reflectance on the Example of Koscian Plain Soils. Fotointerpr. Geogr. 1993, 105, 107–122. [Google Scholar]
- Cierniewski, J. Geometrical Modeling of Soil Bi-Directional Reflectance in the Optical Domain; Bogucki Science Publisher: Poznan, Poland, 1999. [Google Scholar]
- Cierniewski, J. The Bidirectional Reflectance Model from Cultivated Soils Taking into Account Soil Aggregates and Micro-Relief; Bogucki Science Publisher: Poznan, Poland, 2001; p. 150. (In Polish) [Google Scholar]
- Matthias, A.D.D.; Fimbres, A.; Sano, E.E.E.; Post, D.F.F.; Accioly, L.; Batchily, A.K.K.; Ferreira, L.G.G. Surface Roughness Effects on Soil Albedo. Soil Sci. Soc. Am. J. 2000, 64, 1035–1041. [Google Scholar] [CrossRef]
- Cierniewski, J.; Karnieli, A.; Kazmierowski, C.; Krolewicz, S.; Piekarczyk, J.; Lewinska, K.; Goldberg, A.; Wesolowski, R.; Orzechowski, M. Effects of Soil Surface Irregularities on the Diurnal Variation of Soil Broadband Blue-Sky Albedo. IEEE J. Sel. Top Appl. Earth Obs. Remote Sens. 2015, 8, 493–502. [Google Scholar] [CrossRef]
- Cierniewski, J.; Ceglarek, J.; Karnieli, A.; Królewicz, S.; Kaźmierowski, C.; Zagajewski, B. Predicting the Diurnal Blue-Sky Albedo of Soils Using Their Laboratory Reflectance Spectra and Roughness Indices. J. Quant. Spectrosc. Radiat. Transf. 2017, 200, 25–31. [Google Scholar] [CrossRef]
- Cierniewski, J.; Ceglarek, J.; Kaźmierowski, C. Estimating the Diurnal Blue-Sky Albedo of Soils with given Roughness Using Their Laboratory Reflectance Spectra. J. Quant. Spectrosc. Radiat. Transf. 2018, 217, 213–223. [Google Scholar] [CrossRef]
- Eshel, G.; Levy, G.J.; Singer, M.J. Spectral Reflectance Properties of Crusted Soils under Solar Illumination. Soil Sci. Soc. Am. J. 2004, 68, 1982. [Google Scholar] [CrossRef]
- Goldshleger, N.; Ben-Dor, E.; Benyamini, Y.; Agassi, M. Soil Reflectance as a Tool for Assessing Physical Crust Arrangement of Four Typical Soils in Israel. Soil Sci. 2004, 169, 677–687. [Google Scholar] [CrossRef]
- Thomsen, L.M.; Baartman, J.E.M.; Barneveld, R.J.; Starkloff, T.; Stolte, J. Soil Surface Roughness: Comparing Old and New Measuring Methods and Application in a Soil Erosion Model. Soil 2015, 1, 399–410. [Google Scholar] [CrossRef]
- Monteith, J.L.; Szeicz, G. The Radiation Balance of Bare Soil and Vegetation. Q. J. R. Meteorol. Soc. 1961, 87, 159–170. [Google Scholar] [CrossRef]
- Wang, K.; Liu, J.; Zhou, X.; Sparrow, M.; Ma, M.; Sun, Z.; Jiang, W. Validation of the MODIS Global Land Surface Albedo Product Using Ground Measurements in a Semidesert Region on the Tibetan Plateau. J. Geophys. Res. Atmos. 2004, 109, D05107. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Ajayi, A.E.; van de Giesen, N. Tillage and Surface Moisture Effects on Bare-Soil Albedo of a Tropical Loamy Sand. Soil Tillage Res. 2006, 85, 107–114. [Google Scholar] [CrossRef]
- Leroy, M.; Deuzé, J.L.; Bréon, F.M.; Hautecoeur, O.; Herman, M.; Buriez, J.C.; Tanré, D.; Bouffiès, S.; Chazette, P.; Roujean, J.L. Retrieval of Atmospheric Properties and Surface Bidirectional Reflectances over Land from POLDER/ADEOS. J. Geophys. Res. Atmos. 1997, 102, 17023–17037. [Google Scholar] [CrossRef]
- Frasner, R.S. Interaction Mechanisms—Within the Atmosphere. In Manual of Remote Sensing; American Society of Photogrammetry: Falls Church, VA, USA, 1975; pp. 181–233. [Google Scholar]
- Cierniewski, J.; Ceglarek, J.; Karnieli, A.; Ben-Dor, E.; Królewicz, S.; Kaźmierowski, C. Shortwave Radiation Affected by Agricultural Practices. Remote Sens. 2018, 10, 419. [Google Scholar] [CrossRef]
- Cierniewski, J.; Roujean, J.-L.; Jasiewicz, J.; Królewicz, S. Seasonal Net Shortwave Radiation of Bare Arable Land in Poland and Israel According to Roughness and Atmospheric Irradiance. Remote Sens. 2021, 13, 1897. [Google Scholar] [CrossRef]
- Cierniewski, J.; Ceglarek, J.; Kaźmierowski, C.; Roujean, J.L. Combined Use of Remote Sensing and Geostatistical Data Sets for Estimating the Dynamics of Shortwave Radiation of Bare Arable Soils in Europe. Int. J. Remote Sens. 2019, 40, 2359–2374. [Google Scholar] [CrossRef]
- Cierniewski, J.; Ceglarek, J. Annual Dynamics of Shortwave Radiation of Bare Arable Lands on a Global Scale Incorporating Their Roughness. Environ. Earth Sci. 2018, 77, 777. [Google Scholar] [CrossRef]
- Cierniewski, J.; Królewicz, S.; Kaźmierowski, C. Annual Dynamics of Shortwave Radiation as Consequence of Smoothing of Previously Plowed and Harrowed Soils in Poland. J. Appl. Meteorol. Climatol. 2017, 56, 735–743. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; ISBN 9789251083697. [Google Scholar]
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05Deg CMG V061 [Data Set] 2015. Available online: https://lpdaac.usgs.gov/products/mcd12q1v006/ (accessed on 20 April 2024). [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Monatanarella, L. Mapping Topsoil Physical Properties at European Scale Using the LUCAS Database. Geoderma 2016, 261, 110–123. [Google Scholar] [CrossRef]
- Jasiewicz, J.; Cierniewski, J. SALBEC—A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo. Quaest. Geogr. 2021, 40, 95–107. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Requirements; FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998; Volume 285, pp. 19–40. [Google Scholar]
- Schneider, S.H.; Dickinson, R.E. Climate Modeling. Rev. Geophys. 1974, 12, 447. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Use of Remote Sensing for Evapotranspiration Monitoring over Land Surfaces. Hydrol. Sci. J. 1996, 41, 495–516. [Google Scholar] [CrossRef]
- Desjardins, R.L. The Impact of Agriculture on Climate Change. In Proceedings of the 21st annual of the NABC Conference on Adapting Agriculture to Climate Change Symposium, Saskatoon, SK, Canada, 24–26 June 2009; Eagleshham, A., Hardy, R.W.F.A., Eds.; National Agricultural Biotechnology Council: New York, NY, USA; pp. 29–39. [Google Scholar]
- Farmer, T.G.; Cook, J. Climate Change Sicence: A Modern Synthesis. Volume 1—The Physical Climate; Springer Science & Business Media: Dordrecht, Germany, 2013; ISBN 9780874216561. [Google Scholar]
- Mira, M.; Olioso, A.; Gallego-Elvira, B.; Courault, D.; Garrigues, S.; Marloie, O.; Hagolle, O.; Guillevic, P.; Boulet, G. Uncertainty Assessment of Surface Net Radiation Derived from Landsat Images. Remote Sens. Environ. 2016, 175, 251–270. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Ong, C.; Lau, I.C. Reflectance measurements of soils in the laboratory: Standards and protocols. Geoderma 2015, 245–246, 112–124. [Google Scholar] [CrossRef]
- Dent, D.L. ISRIC-World Soil Information. In Encyclopedia of Soil Science; Taylor & Francis: Abingdon, UK, 2006; pp. 950–954. [Google Scholar]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Brown, D.; Demattê, J.; Shepherd, K.; Shi, Z.; Stenberg, B.; Stevens, A.; Adamchuk, V.; et al. A global spectral library to characterize the world’s soil. Earth Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Sacks, W.J.; Deryng, D.; Foley, J.A.; Ramankutty, N. Crop Planting Dates: An Analysis of Global Patterns. Glob. Ecol. Biogeogr. 2010, 19, 607–620. [Google Scholar] [CrossRef]
- Eurostat Electricity and Heat Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_and_heat_statistics#Production_of_electricity (accessed on 15 January 2024).
Soil Unit | W | C | S | ||||||
---|---|---|---|---|---|---|---|---|---|
Area (103 km2) | % of W Area | Number of Samples | Area (103 km2) | % of C Area | Number of Samples | Area (103 km2) | % of S Area | Number of Samples | |
Arenosol | N/A | N/A | N/A | 19.2 | 4.6 | 83 | N/A | N/A | N/A |
Cambisol | 166.4 | 50.5 | 1469 | 110.5 | 26.7 | 615 | 82.9 | 29.6 | 517 |
Chernozem | N/A | N/A | N/A | N/A | N/A | N/A | 51.9 | 18.6 | 122 |
Fluvisol | 31.9 | 9.7 | 260 | 28.2 | 6.8 | 193 | 31.2 | 11.2 | 102 |
Gleysol | N/A | N/A | N/A | 25.7 | 6.2 | 106 | N/A | N/A | N/A |
Leptosol | 24.4 | 7.4 | 242 | N/A | N/A | N/A | N/A | N/A | N/A |
Luvisol | 61.8 | 18.8 | 558 | 125.1 | 30.2 | 650 | 41.6 | 14.9 | 169 |
Phaeozem | N/A | N/A | N/A | N/A | N/A | N/A | 32.8 | 11.7 | 111 |
Podzol | 13.3 | 4.0 | 23 | 61.9 | 15.0 | 340 | 12.4 | 4.4 | 2 |
Vertisol | N/A | N/A | N/A | N/A | N/A | N/A | 16.4 | 5.8 | 38 |
Sum | 90.4 | 2552 | 89.5 | 1987 | 91.8 | 1061 |
Soil Unit | W | C | S | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | Texture | SOC (%) | CaCO3 (%) | Sand (%) | Silt (%) | Clay (%) | Texture | SOC (%) | CaCO3 (%) | Sand (%) | Silt (%) | Clay (%) | Texture | SOC (%) | CaCO3 (%) | |
Arenosol | N/A | N/A | N/A | N/A | N/A | N/A | 70.9 | 22.3 | 6.8 | SL | 1.27 | 0.27 | N/A | N/A | N/A | N/A | N/A | N/A |
Cambisol | 30.4 | 43.8 | 25.8 | L | 1.64 | 14.82 | 40.4 | 38.3 | 21.3 | L | 2.19 | 1.20 | 27.5 | 45.2 | 27.3 | CL | 1.63 | 9.20 |
Chernozem | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 20.9 | 53.6 | 25.5 | SiL | 1.97 | 4.77 |
Fluvisol | 36.5 | 41.1 | 22.4 | L | 1.46 | 10.78 | 43.2 | 39.3 | 17.5 | L | 1.63 | 2.71 | 26.8 | 46.0 | 27.2 | CL | 1.59 | 6.09 |
Gleysol | N/A | N/A | N/A | N/A | N/A | N/A | 50.5 | 35.4 | 14.1 | SL | 2.43 | 0.85 | N/A | N/A | N/A | N/A | N/A | N/A |
Leptosol | 23.6 | 49.0 | 27.4 | CL | 2.1 | 26.78 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
Luvisol | 32.0 | 47.3 | 20.7 | L | 1.51 | 2.2.8 | 46.7 | 40.6 | 12.7 | L | 1.46 | 0.77 | 25.2 | 52.5 | 22.3 | SiL | 1.43 | 0.85 |
Phaeozem | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 17.8 | 51.2 | 31.0 | SiCL | 2.03 | 3.71 |
Podzol | 59.1 | 30.5 | 10.3 | SL | 2.69 | 0.47 | 61.8 | 27.0 | 11.2 | SL | 3.33 | 0.11 | 51.0 | 33.0 | 16.0 | L | 3.08 | 0.15 |
Vertisol | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 19.5 | 43.1 | 37.4 | SiCL | 1.61 | 2.52 |
Sub-Region | Tool | 173rd DOY | 356th DOY |
---|---|---|---|
W | Pd | 0.191 | 0.210 |
Hs | 0.241 | 0.263 | |
C | Pd | 0.192 | 0.224 |
Hs | 0.242 | 0.277 | |
S | Pd | 0.214 | 0.232 |
Hs | 0.236 | 0.256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cierniewski, J.; Ceglarek, J. Annual Dynamics of Shortwave Radiation as Consequence of Smoothing Previously Plowed Bare Arable Land Surface in Europe. Remote Sens. 2024, 16, 2476. https://doi.org/10.3390/rs16132476
Cierniewski J, Ceglarek J. Annual Dynamics of Shortwave Radiation as Consequence of Smoothing Previously Plowed Bare Arable Land Surface in Europe. Remote Sensing. 2024; 16(13):2476. https://doi.org/10.3390/rs16132476
Chicago/Turabian StyleCierniewski, Jerzy, and Jakub Ceglarek. 2024. "Annual Dynamics of Shortwave Radiation as Consequence of Smoothing Previously Plowed Bare Arable Land Surface in Europe" Remote Sensing 16, no. 13: 2476. https://doi.org/10.3390/rs16132476
APA StyleCierniewski, J., & Ceglarek, J. (2024). Annual Dynamics of Shortwave Radiation as Consequence of Smoothing Previously Plowed Bare Arable Land Surface in Europe. Remote Sensing, 16(13), 2476. https://doi.org/10.3390/rs16132476