An Assessment of Changes in the Thermal Environment during the COVID-19 Lockdown: Case Studies from the Greenland and Norwegian Seas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Sliding Paired t-Test
2.3. Additive Decomposition Model
- (1)
- Calculate the trend component using a centered moving average of order 12, which can be written as follows:
- (2)
- Calculate the detrended series using the following:
- (3)
- Estimate the seasonal component for each month by averaging the detrended values for that month. For example, the seasonal component S(t) for January is the average of all the January values in the series of D(t). Thus, The S(t) repeats with a fixed periodicity of 12, i.e., S(t) = S(t + 12).
- (4)
- Calculate the irregular component using:
2.4. Wavelet Analysis
3. Results
3.1. Change Characteristics of the SST
3.1.1. Spatial Distribution of the Annual SST
3.1.2. Sliding Paired t-Test Results of the SST
3.1.3. Decomposition Analysis of the SST
3.2. Change Characteristics of the CO2 Concentration
3.3. Relationships of the Periodic Variation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Giannopoulou, I.; Tsobanoglou, G.O. COVID-19 pandemic: Challenges and opportunities for the Greek health care system. Ir. J. Psychol. Med. 2020, 37, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Jeffery, M.M.; D’Onofrio, G.; Paek, H.; Platts-Mills, T.F.; Soares, W.E., III; Hoppe, J.A.; Genes, N.; Nath, B.; Melnick, E.R. Trends in Emergency Department Visits and Hospital Admissions in Health Care Systems in 5 States in the First Months of the COVID-19 Pandemic in the US. JAMA Intern. Med. 2020, 180, 1328–1333. [Google Scholar] [CrossRef] [PubMed]
- Davin-Casalena, B.; Jardin, M.; Guerrera, H.; Mabille, J.; Trehard, H.; Lapalus, D.; Menager, C.; Nauleau, S.; Cassaro, V.; Verger, P.; et al. The impact of the COVID-19 pandemic on first-line primary care in southeastern France: Feedback on the implementation of a real-time monitoring system based on regional health insurance data. Rev. D Epidemiol. Sante Publique 2021, 69, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Filip, R.; Gheorghita Puscaselu, R.; Anchidin-Norocel, L.; Dimian, M.; Savage, W.K. Global Challenges to Public Health Care Systems during the COVID-19 Pandemic: A Review of Pandemic Measures and Problems. J. Pers. Med. 2022, 12, 1295. [Google Scholar] [CrossRef] [PubMed]
- Atalan, A. Is the lockdown important to prevent the COVID-19 pandemic? Effects on psychology, environment and economy-perspective. Ann. Med. Surg. 2020, 56, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.K.H.; Wong, J.Y.H.; Tang, E.H.M.; Au, C.H.; Lau, K.T.K.; Wai, A.K.C. Impact of National Containment Measures on Decelerating the Increase in Daily New Cases of COVID-19 in 54 Countries and 4 Epicenters of the Pandemic: Comparative Observational Study. J. Med. Internet Res. 2020, 22, e19904. [Google Scholar] [CrossRef] [PubMed]
- Violato, C.; Violato, E.M.; Violato, E.M. Impact of the stringency of lockdown measures on COVID-19: A theoretical model of a pandemic. PLoS ONE 2021, 16, e0258205. [Google Scholar] [CrossRef]
- Sun, K.S.; Lau, T.S.M.; Yeoh, E.K.; Chung, V.C.H.; Leung, Y.S.; Yam, C.H.K.; Hung, C.T. Effectiveness of different types and levels of social distancing measures: A scoping review of global evidence from earlier stage of COVID-19 pandemic. BMJ Open 2022, 12, e053938. [Google Scholar] [CrossRef]
- Rupani, P.F.; Nilashi, M.; Abumalloh, R.A.; Asadi, S.; Samad, S.; Wang, S. Coronavirus pandemic (COVID-19) and its natural environmental impacts. Int. J. Environ. Sci. Technol. 2020, 17, 4655–4666. [Google Scholar] [CrossRef]
- Verschuur, J.; Koks, E.E.; Hall, J.W. Global economic impacts of COVID-19 lockdown measures stand out in high-frequency shipping data. PLoS ONE 2021, 16, e0248818. [Google Scholar] [CrossRef]
- Wu, J.; Zhan, X.; Xu, H.; Ma, C. The economic impacts of COVID-19 and city lockdown: Early evidence from China. Struct. Chang. Econ. Dyn. 2023, 65, 151–165. [Google Scholar] [CrossRef]
- El Kenawy, A.M.; Lopez-Moreno, J.I.; McCabe, M.F.; Domínguez-Castro, F.; Peña-Angulo, D.; Gaber, I.M.; Alqasemi, A.S.; Al Kindi, K.M.; Al-Awadhi, T.; Hereher, M.E.; et al. The impact of COVID-19 lockdowns on surface urban heat island changes and air-quality improvements across 21 major cities in the Middle East. Environ. Pollut. 2021, 288, 117802. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.L.; Zhou, D.C.; Chen, H.S.; Li, J.J.; Ren, Y.J.; Liao, H.; Liu, Y.B. Decreases in the urban heat island effect during the Coronavirus Disease 2019 (COVID-19) lockdown in Wuhan, China: Observational evidence. Int. J. Climatol. 2022, 42, 8792–8803. [Google Scholar]
- Teufel, B.; Sushama, L.; Poitras, V.; Dukhan, T.; Bélair, S.; Miranda-Moreno, L.; Sun, L.J.; Sasmito, A.P.; Bitsuamlak, G. Impact of COVID-19-Related Traffic Slowdown on Urban Heat Characteristics. Atmosphere 2021, 12, 13. [Google Scholar] [CrossRef]
- Ali, G.; Abbas, S.; Qamer, F.M.; Wong, M.S.; Rasul, G.; Irteza, S.M.; Shahzad, N. Environmental impacts of shifts in energy, emissions, and urban heat island during the COVID-19 lockdown across Pakistan. J. Clean Prod. 2021, 291, 12. [Google Scholar] [CrossRef] [PubMed]
- Jephcote, C.; Hansell, A.L.; Adams, K.; Gulliver, J. Changes in air quality during COVID-19 ‘lockdown’ in the United Kingdom. Environ. Pollut. 2021, 272, 11. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Das, A.; Hembram, T.K.; Saha, S.; Pradhan, B.; Alamri, A.M. Impact of COVID-19 Induced Lockdown on Environmental Quality in Four Indian Megacities Using Landsat 8 OLI and TIRS-Derived Data and Mamdani Fuzzy Logic Modelling Approach. Sustainability 2020, 12, 5464. [Google Scholar] [CrossRef]
- Mandal, I.; Pal, S. COVID-19 pandemic persuaded lockdown effects on environment over stone and areas. Sci. Total Environ. 2020, 732, 10. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.C.; Chowdhuri, I.; Saha, A.; Ghosh, M.; Roy, P.; Das, B.; Chakrabortty, R.; Shit, M. COVID-19 strict lockdown impact on urban air quality and atmospheric temperature in four megacities of India. Geosci. Front. 2022, 13, 101368. [Google Scholar] [CrossRef]
- Yilmaz, S.; Mentes, Y.; Angin, S.N.; Qaid, A. Impact of the COVID-19 outbreak on urban air, Land surface temperature and air pollution in cold climate zones. Environ. Res. 2023, 237, 116887. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. COVID-19 lockdown effect on land surface temperature and normalized difference vegetation index. Geomat. Nat. Hazards Risk 2021, 12, 1082–1100. [Google Scholar] [CrossRef]
- Ranjan, A.K.; Dash, J.; Xiao, J.; Gorai, A.K. Vegetation activity enhanced in India during the COVID-19 lockdowns: Evidence from satellite data. Geocarto Int. 2022, 37, 12618–12637. [Google Scholar] [CrossRef]
- Sresto, M.A.; Morshed, M.M.; Siddika, S.; Almohamad, H.; Al-Mutiry, M.; Abdo, H.G. Impact of COVID-19 Lockdown on Vegetation Indices and Heat Island Effect: A Remote Sensing Study of Dhaka City, Bangladesh. Sustainability 2022, 14, 7922. [Google Scholar] [CrossRef]
- Hidalgo Garcia, D.; Arco Diaz, J. Impacts of the COVID-19 confinement on air quality, the Land Surface Temperature and the urban heat island in eight cities of Andalusia (Spain). Remote Sens. Appl. Soc. Environ. 2022, 25, 100667. [Google Scholar] [CrossRef] [PubMed]
- Qadri, S.M.T.; Hamdan, A.; Raj, V.; Ehsan, M.; Shamsuddin, N.; Hakimi, M.H.; Mustapha, K.A. Assessment of Land Surface Temperature from the Indian Cities of Ranchi and Dhanbad during COVID-19 Lockdown: Implications on the Urban Climatology. Sustainability 2023, 15, 12961. [Google Scholar] [CrossRef]
- Veettil, B.K.; Puri, V.; Van, D.D.; Quang, N.X. Variations in land surface temperatures in small-scale urban areas in Vietnam during COVID-19 restrictions: Case studies from Da Nang, Hue and Vinh City. Environ. Monit. Assess. 2023, 195, 822. [Google Scholar] [CrossRef]
- Veettil, B.K.; Van, D.D. Did the COVID-19 restrictions influence land surface temperatures in Southeast Asia? A study from Ho Chi Minh City, Vietnam. Environ. Sci. Pollut. Res. 2023, 30, 66812–66821. [Google Scholar] [CrossRef]
- Parida, B.R.; Bar, S.; Kaskaoutis, D.; Pandey, A.C.; Polade, S.D.; Goswami, S. Impact of COVID-19 induced lockdown on land surface temperature, aerosol, and urban heat in Europe and North America. Sust. Cities Soc. 2021, 75, 103336. [Google Scholar] [CrossRef] [PubMed]
- Nanda, D.; Mishra, D.R.; Swain, D. COVID-19 lockdowns induced land surface temperature variability in mega urban agglomerations in India. Environ. Sci.-Process. Impacts 2021, 23, 144–159. [Google Scholar] [CrossRef]
- Sarin, T.S.; Vinoj, V.; Swain, D.; Landu, K.; Suhas, E. Aerosol Induced Changes in Sea Surface Temperature Over the Bay of Bengal Due to COVID-19 Lockdown. Front. Mar. Sci. 2021, 8, 648566. [Google Scholar] [CrossRef]
- Baek, J.Y.; Park, J.; Kim, D.W.; Lee, J.S.; Lee, J.Y.; Lee, S.J.; Jo, Y.H. Role of Aerosols in Spring Blooms in the Central Yellow Sea During the COVID-19 Lockdown by China. Front. Mar. Sci. 2022, 9, 911819. [Google Scholar] [CrossRef]
- Al Shehhi, M.R.; Samad, Y.A. Effects of the COVID-19 pandemic on the oceans. Remote Sens. Lett. 2021, 12, 325–334. [Google Scholar] [CrossRef]
- Seelanki, V.; Pant, V. An Evaluation of the Impact of Pandemic Driven Lockdown on the Phytoplankton Biomass Over the North Indian Ocean Using Observations and Model. Front. Mar. Sci. 2021, 8, 722401. [Google Scholar] [CrossRef]
- Andreoni, V. Estimating the European CO2 emissions change due to COVID-19 restrictions. Sci. Total Environ. 2021, 769, 8. [Google Scholar] [CrossRef]
- Parida, B.R.; Bar, S.; Singh, N.; Oinam, B.; Pandey, A.C.; Kumar, M. A short-term decline in anthropogenic emission of CO2 in India due to COVID-19 confinement. Prog. Phys. Geogr.-Earth Environ. 2021, 45, 471–487. [Google Scholar] [CrossRef]
- Le Quéré, C.; Jackson, R.B.; Jones, M.W.; Smith, A.J.P.; Abernethy, S.; Andrew, R.M.; De-Gol, A.J.; Willis, D.R.; Shan, Y.L.; Canadell, O.S.; et al. Temporary reduction in daily global CO2 emissions during the COVID-19 forced confinement. Nat. Clim. Chang. 2020, 10, 647–653. [Google Scholar] [CrossRef]
- Liu, Z.; Ciais, P.; Deng, Z.; Lei, R.X.; Davis, S.J.; Feng, S.; Zheng, B.; Cui, D.; Dou, X.Y.; Zhu, B.Q.; et al. Near-real-time monitoring of global CO2 emissions reveals the effects of the COVID-19 pandemic. Nat. Commun. 2020, 11, 12. [Google Scholar] [CrossRef]
- Liu, Z.; Deng, Z.; Zhu, B.Q.; Ciais, P.; Davis, S.J.; Tan, J.G.; Andrew, R.M.; Boucher, O.; Ben Arous, S.; Canadell, J.G.; et al. Global patterns of daily CO2 emissions reductions in the first year of COVID-19. Nat. Geosci. 2022, 15, 615–620. [Google Scholar] [CrossRef]
- Maniatis, K.; Chiaramonti, D.; van den Heuvel, E. Post COVID-19 Recovery and 2050 Climate Change Targets: Changing the Emphasis from Promotion of Renewables to Mandated Curtailment of Fossil Fuels in the EU Policies. Energies 2021, 14, 1347. [Google Scholar] [CrossRef]
- Drews, S.; Savin, I.; van den Bergh, J.; Villamayor-Tomas, S. Climate concern and policy acceptance before and after COVID-19. Ecol. Econ. 2022, 199, 16. [Google Scholar] [CrossRef]
- Vo, T.P.T.; Ngo, H.H.; Guo, W.S.; Turney, C.; Liu, Y.W.; Nguyen, D.D.; Bui, X.T.; Varjani, S. Influence of the COVID-19 pandemic on climate change summit negotiations from the climate governance perspective. Sci. Total Environ. 2023, 878, 12. [Google Scholar] [CrossRef] [PubMed]
- Forster, P.M.; Forster, H.I.; Evans, M.J.; Gidden, M.J.; Jones, C.D.; Keller, C.A.; Lamboll, R.D.; Quere, C.L.; Rogelj, J.; Rosen, D.; et al. Current and future global climate impacts resulting from COVID-19. Nat. Clim. Chang. 2020, 10, 913–919. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Zhao, D.; Zhao, Y.; Wen, Y.H. Analysis of precipitation characteristics and changes of drought and flood disasters on Anhui Province between 1961 and 2020, based on time series. Water Supply 2022, 22, 5265–5280. [Google Scholar] [CrossRef]
- Zhao, P.; He, Z.B. Temperature Change Characteristics in Gansu Province of China. Atmosphere 2022, 13, 728. [Google Scholar] [CrossRef]
- Tang, C.L.; Hao, D.W.; Wei, Y.Y.; Zhu, F.Z.; Wu, X.; Tian, X.M. Time-Frequency Characteristics of Global SST Anomalies in the Past 100 Years: A Metrological Approach. J. Mar. Sci. Eng. 2022, 10, 1163. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Z.Z.; Zhu, J.; Chen, D.J.; Qin, F. Spatio-Temporal Extraction of Surface Waterbody and Its Response of Extreme Climate along the Upper Huaihe River. Sustainability 2022, 14, 3223. [Google Scholar] [CrossRef]
- Li, Y.; Jia, C.C.; Ma, S.; Hu, Z.T.; Sun, J. Refined spatiotemporal analysis of drought characteristics under different characteristic variable matchings: A case study of the middle reaches of the Yellow River basin, China. Environ. Sci. Pollut. Res. 2022, 29, 60440–60458. [Google Scholar] [CrossRef]
- Yang, Y.R.; Dai, E.; Yin, J.; Jia, L.Z.; Zhang, P.; Sun, J.G. Spatial and Temporal Evolution Patterns of Droughts in China over the Past 61 Years Based on the Standardized Precipitation Evapotranspiration Index. Water 2024, 16, 1012. [Google Scholar] [CrossRef]
- Yue, S.J.; Ji, G.X.; Huang, J.C.; Cheng, M.Y.; Guo, Y.L.; Chen, W.Q. Quantitative Assessment of the Contribution of Climate and Underlying Surface Change to Multiscale Runoff Variation in the Jinsha River Basin, China. Land 2023, 12, 1564. [Google Scholar] [CrossRef]
- Wan, Z.W.; Chen, X.; Ju, M.; Ling, C.H.; Liu, G.X.; Lin, S.P.; Liu, H.H.; Jia, Y.L.; Jiang, M.X.; Liao, F.Q. Streamflow Reconstruction and Variation Characteristic Analysis of the Ganjiang River in China for the Past 515 Years. Sustainability 2020, 12, 1168. [Google Scholar] [CrossRef]
- He, B.; Tuya, W.; Qinchaoketu, S.; Nanzad, L.; Yong, M.; Kesi, T.; Sun, C.Q. Climate Change Characteristics of Typical Grassland in the Mongolian Plateau from 1978 to 2020. Sustainability 2022, 14, 16529. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, L.; Zhang, Z.; Li, J.X.; Hou, L.; Liu, J.Q.; Wang, Y.B. Research on the Hydrological Variation Law of the Dawen River, a Tributary of the Lower Yellow River. Agronomy 2022, 12, 1719. [Google Scholar] [CrossRef]
- Zhang, S.H.; Qi, G.Z.; Su, K.; Zhou, L.Y.; Bai, H.Y. Research on Sequence Construction and Characteristics Diagnosis of Droughts and Floods in the Qinling Mountains of China From 1850 to 1959. Front. Earth Sci. 2022, 10, 860750. [Google Scholar] [CrossRef]
- Yu, Y.; Zhao, R.; Zhang, J.H.; Du, S.; Zhou, T.Y.; Fu, X.J.; Jiang, S.Y. Identification and restoration of hydrological processes alteration during the fish spawning period. Sci. Rep. 2023, 13, 11307. [Google Scholar] [CrossRef] [PubMed]
- Hand, R.; Keenlyside, N.S.; Omrani, N.E.; Bader, J.; Greatbatch, R.J. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector. Clim. Dyn. 2019, 52, 417–438. [Google Scholar] [CrossRef]
- Ruela, R.; Sousa, M.C.; deCastro, M.; Dias, J.M. Global and regional evolution of sea surface temperature under climate change. Glob. Planet. Change 2020, 190, 103190. [Google Scholar] [CrossRef]
- Vasconcellos, F.C.; de Souza, J.N.; Dereczynski, C.P.; Luiz-Silva, W.; da Silva, F.P.; Parise, C.K. Warming trends of southwestern Atlantic SST and the summer’s warmest SST’s impact on South American climate. Int. J. Climatol. 2023, 43, 5604–5619. [Google Scholar] [CrossRef]
- Garcia-Soto, C.; Cheng, L.J.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Báez, J.C.; et al. An Overview of Ocean Climate Change Indicators: Sea Surface Temperature, Ocean Heat Content, Ocean pH, Dissolved Oxygen Concentration, Arctic Sea Ice Extent, Thickness and Volume, Sea Level and Strength of the AMOC (Atlantic Meridional Overturning Circulation). Front. Mar. Sci. 2021, 8, 642372. [Google Scholar]
- Fieg, K.; Gerdes, R.; Fahrbach, E.; Beszczynska-Möller, A.; Schauer, U. Simulation of oceanic volume transports through Fram Strait 1995–2005. Ocean Dyn. 2010, 60, 491–502. [Google Scholar] [CrossRef]
- Orvik, K.A.; Niiler, P. Major pathways of Atlantic water in the northern North Atlantic and Nordic Seas toward Arctic. Geophys. Res. Lett. 2002, 29, 4. [Google Scholar] [CrossRef]
- Chafik, L.; Rossby, T. Volume, Heat, and Freshwater Divergences in the Subpolar North Atlantic Suggest the Nordic Seas as Key to the State of the Meridional Overturning Circulation. Geophys. Res. Lett. 2019, 46, 4799–4808. [Google Scholar] [CrossRef]
- Mallat, S.G. A theory for multiresolution signal decomposition—The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 674–693. [Google Scholar] [CrossRef]
- Kwon, S.H.; Lee, H.S.; Kim, C.H. Wavelet transform based coherence analysis of freak wave and its impact. Ocean Eng. 2005, 32, 1572–1589. [Google Scholar] [CrossRef]
- Audet, P.; Mareschal, J.C. Wavelet analysis of the coherence between Bouguer gravity and topography: Application to the elastic thickness anisotropy in the Canadian Shield. Geophys. J. Int. 2007, 168, 287–298. [Google Scholar] [CrossRef]
- Perez-Peraza, J.; Velasco, V.; Kavlakov, S. Wavelet coherence analysis of Atlantic Hurricanes and cosmic rays. Geofis. Int. 2008, 47, 231–244. [Google Scholar] [CrossRef]
- Lyubushin, A.A. Wavelet-based coherence measures of global seismic noise properties. J. Seismol. 2015, 19, 329–340. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Aguiar-Conraria, L.; Soares, M.J. The continuous wavelet transform: Moving beyond uni- and bivariate analysis. J. Econ. Surv. 2014, 28, 344–375. [Google Scholar] [CrossRef]
- Swift, J.H.; Aagaard, K. Seasonal transitions and water mass formation in the Iceland and Greenland seas. Deep-Sea Res. Part A-Oceanogr. Res. Pap. 1981, 28, 1107–1129. [Google Scholar] [CrossRef]
- Blindheim, J. Arctic intermediate water in the Norwegian sea. Deep-Sea Res. Part A-Oceanogr. Res. Pap. 1990, 37, 1475–1489. [Google Scholar] [CrossRef]
- Wang, X.Y.; Zhao, J.P.; Hattermann, T.; Lin, L.; Chen, P. Transports and Accumulations of Greenland Sea Intermediate Waters in the Norwegian Sea. J. Geophys. Res.-Ocean. 2021, 126, e2020JC016582. [Google Scholar] [CrossRef]
- Yang, M.; Qiu, Y.B.; Huang, L.; Cheng, M.C.; Chen, J.G.; Cheng, B.; Jiang, Z.X. Changes in Sea Surface Temperature and Sea Ice Concentration in the Arctic Ocean over the Past Two Decades. Remote Sens. 2023, 15, 1095. [Google Scholar] [CrossRef]
- Abot, L.; Provost, C.; Poli, L. Recent Convection Decline in the Greenland Sea: Insights From the Mercator Ocean System Over 2008–2020. J. Geophys. Res.-Ocean. 2023, 128, e2022JC019320. [Google Scholar] [CrossRef]
Region | Months | Intercept | R2 | Adjusted R2 |
---|---|---|---|---|
Greenland Sea | −0.0097 *** | 266.97 *** | 0.145 | 0.132 |
Norwegian Sea | −0.0036 ** | 275.82 *** | 0.108 | 0.095 |
Region | Months | Intercept | R2 | Adjusted R2 |
---|---|---|---|---|
Greenland Sea | 0.207 *** | 399.94 *** | 0.998 | 0.998 |
Norwegian Sea | 0.208 *** | 400.03 *** | 0.998 | 0.998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, W.; Zhang, X.; Zhang, H. An Assessment of Changes in the Thermal Environment during the COVID-19 Lockdown: Case Studies from the Greenland and Norwegian Seas. Remote Sens. 2024, 16, 2477. https://doi.org/10.3390/rs16132477
Shi W, Zhang X, Zhang H. An Assessment of Changes in the Thermal Environment during the COVID-19 Lockdown: Case Studies from the Greenland and Norwegian Seas. Remote Sensing. 2024; 16(13):2477. https://doi.org/10.3390/rs16132477
Chicago/Turabian StyleShi, Weifang, Xue Zhang, and Hongye Zhang. 2024. "An Assessment of Changes in the Thermal Environment during the COVID-19 Lockdown: Case Studies from the Greenland and Norwegian Seas" Remote Sensing 16, no. 13: 2477. https://doi.org/10.3390/rs16132477
APA StyleShi, W., Zhang, X., & Zhang, H. (2024). An Assessment of Changes in the Thermal Environment during the COVID-19 Lockdown: Case Studies from the Greenland and Norwegian Seas. Remote Sensing, 16(13), 2477. https://doi.org/10.3390/rs16132477