Impact of Wildfires on Land Surface Cold Season Climate in the Northern High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Analysis
2.2.1. Mapping Burn Severity and Analysis of Fire-Caused Land Cover and Vegetation Density Change
2.2.2. Detecting Impact of Fires on Snowmelt Dates
2.2.3. Impact of Fires on Surface Albedo and Surface Shortwave Forcing
3. Results
3.1. Impact of Fire on Vegetation Composition
3.1.1. Land Cover Changes
3.1.2. Vegetation Density Changes
3.2. Fires’ Impact on Snow Melt Timing
3.3. Impact of Fires on Surface Albedo and Surface Radiative Forcing
3.3.1. Impact of Burn Severity on Surface Albedo
3.3.2. Impact of Fire on Surface Albedo Increases
3.3.3. Impact of Fires on Surface Shortwave Forcing
4. Discussion
4.1. Burn Severity and Land Cover
4.2. Impact of Postfire Snow Melting
4.3. Postfire Albedo Variability
4.4. Surface Shortwave Forcing
4.5. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Fire | Fire Name | Date | Size (km2) | Fire Type | Latitude | Longitude | Land Type |
---|---|---|---|---|---|---|---|
AF | Applegate | 26/05/2010 | 74.27 | Wildfire | 65.189 | −150.056 | Evergreen Forest, Deciduous Forest, Mixed Forest, Shrub/Scrub, Woody Wetland, Emergent Herbaceous Wetland |
CF | Chitanatala | 26/05/2010 | 143.98 | Wildfire | 64.752 | −151.77 | Evergreen Forest, Deciduous Forest, Mixed Forest, Shrub/Scrub, Woody Wetland, Open Water, Emergent Herbaceous Wetland, Moss, Grassland/Herbaceous, |
DCF | Dempsey Creek | 04/06/2010 | 52.1 | Wildfire | 66.135 | −142.108 | Evergreen Forest, Deciduous Forest, Mixed Forest, Shrub/Scrub, Woody Wetland, Open Water |
PCF2 | Peavey Creek | 01/07/2010 | 124.12 | Wildfire | 66.726 | −151.855 | Evergreen Forest, Deciduous Forest, Mixed Forest, Shrub/Scrub, Woody Wetland, Open Water, Emergent Herbaceous Wetland, Barren Land, Dwarf Scrub, Sedge/Herbaceous, Grassland/Herbaceous |
CLF | Canvasback Lake | 12/07/2010 | 141.29 | Wildfire | 66.421 | −146.489 | Evergreen Forest, Deciduous Forest, Mixed Forest, Shrub/Scrub, Woody Wetland, Open Water, Emergent Herbaceous Wetland, Barren Land, Dwarf Scrub, Sedge/Herbaceous |
PCF | Pat Creek | 25/06/2010 | 291.62 | Wildfire | 66.273 | −148.507 | Evergreen Forest, Deciduous Forest, Mixed Forest Shrub/Scrub, Woody Wetland, Emergent Herbaceous Wetland, Open Water, Dwarf Scrub |
References
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Bekryaev, R.V.; Polyakov, I.V.; Alexeev, V.A. Role of Polar Amplification in Long-Term Surface Air Temperature Variations and Modern Arctic Warming. J. Clim. 2010, 23, 3888–3906. [Google Scholar] [CrossRef]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Goetz, S.J.; Mack, M.C.; Alexander, H.D.; Jin, Y.; Randerson, J.T.; Loranty, M.M. The impacts and implications of an intensifying fire regime on Alaskan boreal forest composition and albedo. Glob. Chang. Biol. 2011, 17, 2853–2866. [Google Scholar] [CrossRef]
- Wang, Z.; Erb, A.M.; Schaaf, C.B.; Sun, Q.; Liu, Y.; Yang, Y.; Shuai, Y.; Casey, K.A.; Román, M.O. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data. Remote Sens. Environ. 2016, 185, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Balshi, M.S.; McGuire, A.D.; Duffy, P.; Flannigan, M.; Walsh, J.; Melillo, J. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Glob. Chang. Biol. 2009, 15, 578–600. [Google Scholar] [CrossRef]
- Potter, S.; Solvik, K.; Erb, A.; Goetz, S.J.; Johnstone, J.F.; Mack, M.C.; Randerson, J.T.; Román, M.O.; Schaaf, C.L.; Turetsky, M.R.; et al. Climate change decreases the cooling effect from postfire albedo in boreal North America. Glob. Chang. Biol. 2020, 26, 1592–1607. [Google Scholar] [CrossRef]
- Rogers, B.M.; Randerson, J.T.; Bonan, G.B. High-latitude cooling associated with landscape changes from North American boreal forest fires. Biogeosciences 2013, 10, 699–718. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Rupp, T.S.; Olson, M.; Verbyla, D. Modeling impacts of fire severity on successional trajectories and future fire behavior in Alaskan boreal forests. Landsc. Ecol. 2011, 26, 487–500. [Google Scholar] [CrossRef]
- Bodí, M.B.; Martin, D.A.; Balfour, V.N.; Santín, C.; Doerr, S.H.; Pereira, P.; Cerdà, A.; Mataix-Solera, J. Wildland fire ash: Production, composition and eco-hydro-geomorphic effects. Earth-Sci. Rev. 2014, 130, 103–127. [Google Scholar] [CrossRef]
- McGuire, A.D.; Anderson, L.G.; Christensen, T.R.; Dallimore, S.; Guo, L.; Hayes, D.J.; Heimann, M.; Lorenson, T.D.; Macdonald, R.W.; Roulet, N. Sensitivity of the Carbon Cycle in the Arctic to Climate Change. Ecol. Monogr. 2009, 79, 523–555. [Google Scholar] [CrossRef]
- Randerson, J.T.; Liu, H.; Flanner, M.G.; Chambers, S.D.; Jin, Y.; Hess, P.G.; Pfister, G.; Mack, M.C.; Treseder, K.K.; Welp, L.R.; et al. The Impact of Boreal Forest Fire on Climate Warming. Science 2006, 314, 1130–1132. [Google Scholar] [CrossRef] [PubMed]
- Massey, R.; Rogers, B.M.; Berner, L.T.; Cooperdock, S.; Mack, M.C.; Walker, X.J.; Goetz, S.J. Forest composition change and biophysical climate feedbacks across boreal North America. Nat. Clim. Chang. 2023, 13, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Amiro, B.D.; Orchansky, A.L.; Barr, A.G.; Black, T.A.; Chambers, S.D.; Chapin Iii, F.S.; Goulden, M.L.; Litvak, M.; Liu, H.P.; McCaughey, J.H.; et al. The effect of post-fire stand age on the boreal forest energy balance. Agric. For. Meteorol. 2006, 140, 41–50. [Google Scholar] [CrossRef]
- Ni, W.; Li, X.; Woodcock, C.E.; Caetano, M.R.; Strahler, A.H. An analytical hybrid GORT model for bidirectional reflectance over discontinuous plant canopies. IEEE Trans. Geosci. Remote Sens. 1999, 37, 987–999. [Google Scholar] [CrossRef]
- Huang, C.; Feng, J.; Tang, F.; He, H.S.; Liang, Y.; Wu, M.M.; Xu, W.; Liu, B.; Shi, F.; Chen, F. Predicting the responses of boreal forests to climate-fire-vegetation interactions in Northeast China. Environ. Model. Softw. 2022, 153, 105410. [Google Scholar] [CrossRef]
- Dawe, D.A.; Parisien, M.-A.; Van Dongen, A.; Whitman, E. Initial succession after wildfire in dry boreal forests of northwestern North America. Plant Ecol. 2022, 223, 789–809. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Turetsky, M.R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Mack, M.C.; Walker, X.J.; Johnstone, J.F.; Alexander, H.D.; Melvin, A.M.; Jean, M.; Miller, S.N. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 2021, 372, 280–283. [Google Scholar] [CrossRef]
- Jin, Y.; Randerson, J.T.; Goetz, S.J.; Beck, P.S.A.; Loranty, M.M.; Goulden, M.L. The influence of burn severity on postfire vegetation recovery and albedo change during early succession in North American boreal forests. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Nath, B.; Ni-Meister, W. The Interplay between Canopy Structure and Topography and Its Impacts on Seasonal Variations in Surface Reflectance Patterns in the Boreal Region of Alaska—Implications for Surface Radiation Budget. Remote Sens. 2021, 13, 3108. [Google Scholar] [CrossRef]
- O’Halloran, T.L.; Acker, S.A.; Joerger, V.M.; Kertis, J.; Law, B.E. Postfire influences of snag attrition on albedo and radiative forcing. Geophys. Res. Lett. 2014, 41, 9135–9142. [Google Scholar] [CrossRef]
- Ni-Meister, W.; Yang, W.; Kiang, N.Y. A clumped-foliage canopy radiative transfer model for a global dynamic terrestrial ecosystem model. I: Theory. Agric. For. Meteorol. 2010, 150, 881–894. [Google Scholar] [CrossRef]
- Yang, W.; Ni-Meister, W.; Kiang, N.Y.; Moorcroft, P.R.; Strahler, A.H.; Oliphant, A. A clumped-foliage canopy radiative transfer model for a Global Dynamic Terrestrial Ecosystem Model II: Comparison to measurements. Agric. For. Meteorol. 2010, 150, 895–907. [Google Scholar] [CrossRef]
- Ni, W.; Li, X.; Woodcock, C.E.; Roujean, J.L.; Davis, R.E. Transmission of solar radiation in boreal conifer forests: Measurements and models. J. Geophys. Res. Atmos. 1997, 102, 29555–29566. [Google Scholar] [CrossRef]
- Lyons, E.A.; Jin, Y.; Randerson, J.T. Changes in surface albedo after fire in boreal forest ecosystems of interior Alaska assessed using MODIS satellite observations. J. Geophys. Res. Biogeosci. 2008, 113. [Google Scholar] [CrossRef]
- Ni, W.; Woodcock, C.E. Effect of canopy structure and the presence of snow on the albedo of boreal conifer forests. J. Geophys. Res. Atmos. 2000, 105, 11879–11888. [Google Scholar] [CrossRef]
- Hovi, A.; Lindberg, E.; Lang, M.; Arumäe, T.; Peuhkurinen, J.; Sirparanta, S.; Pyankov, S.; Rautiainen, M. Seasonal dynamics of albedo across European boreal forests: Analysis of MODIS albedo and structural metrics from airborne LiDAR. Remote Sens. Environ. 2019, 224, 365–381. [Google Scholar] [CrossRef]
- Koshkin, A.L.; Hatchett, B.J.; Nolin, A.W. Wildfire impacts on western United States snowpacks. Front. Water 2022, 4, 971271. [Google Scholar] [CrossRef]
- O’Halloran, T.L.; Law, B.E.; Goulden, M.L.; Wang, Z.; Barr, J.G.; Schaaf, C.; Brown, M.; Fuentes, J.D.; Göckede, M.; Black, A.; et al. Radiative forcing of natural forest disturbances. Glob. Chang. Biol. 2012, 18, 555–565. [Google Scholar] [CrossRef]
- Oris, F.; Asselin, H.; Ali, A.A.; Finsinger, W.; Bergeron, Y. Effect of increased fire activity on global warming in the boreal forest. Environ. Rev. 2014, 22, 206–219. [Google Scholar] [CrossRef]
- Gleason, K.E.; Nolin, A.W. Charred forests accelerate snow albedo decay: Parameterizing the post-fire radiative forcing on snow for three years following fire. Hydrol. Process. 2016, 30, 3855–3870. [Google Scholar] [CrossRef]
- Burles, K.; Boon, S. Snowmelt energy balance in a burned forest plot, Crowsnest Pass, Alberta, Canada. Hydrol. Process. 2011, 25, 3012–3029. [Google Scholar] [CrossRef]
- Gersh, M.; Gleason, K.E.; Surunis, A. Forest Fire Effects on Landscape Snow Albedo Recovery and Decay. Remote Sens. 2022, 14, 4079. [Google Scholar] [CrossRef]
- Giovando, J.; Niemann, J.D. Wildfire Impacts on Snowpack Phenology in a Changing Climate Within the Western U.S. Water Resour. Res. 2022, 58, e2021WR031569. [Google Scholar] [CrossRef]
- Douglas, T.A.; Zhang, C. Machine learning analyses of remote sensing measurements establish strong relationships between vegetation and snow depth in the boreal forest of Interior Alaska. Environ. Res. Lett. 2021, 16, 065014. [Google Scholar] [CrossRef]
- Lindsay, C.; Zhu, J.; Miller, A.; Kirchner, P.; Wilson, T. Deriving Snow Cover Metrics for Alaska from MODIS. Remote Sens. 2015, 7, 12961–12985. [Google Scholar] [CrossRef]
- French, N.H.F.; Whitley, M.A.; Jenkins, L.K. Fire disturbance effects on land surface albedo in Alaskan tundra. J. Geophys. Res. Biogeosci. 2016, 121, 841–854. [Google Scholar] [CrossRef]
- Hawotte, F.; Radoux, J.; Chomé, G.; Defourny, P. Assessment of Automated Snow Cover Detection at High Solar Zenith Angles with PROBA-V. Remote Sens. 2016, 8, 699. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A Project for Monitoring Trends in Burn Severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Homer, C.; Dewitz, J.; Fry, J.; Coan, M.; Hossain, N.; Larson, C.; Herold, N.; McKerrow, A.; Nick Vandriel, J.; Wickham, J. Completion of the 2001 national land cover database for the conterminous United States. Photogramm. Eng. Remote Sens. 2007, 73, 337–341. [Google Scholar]
- Kai, Y.; Taejin, P.; Guangjian, Y.; Chi, C.; Bin, Y.; Zhao, L.; Nemani, R.R.; Yuri, K.; Myneni, R.B. Evaluation of MODIS LAI/FPAR Product Collection 6. Part 1: Consistency and Improvements. Remote Sens. 2016, 8, 359. [Google Scholar] [CrossRef]
- O’Leary, D., III; Hall, D.K.; Medler, M.; Matthews, R.; Flower, A. Snowmelt Timing Maps Derived from MODIS for North America, Version 2, 2001–2018; ORNL Distributed Active Archive Center: Oak Ridge, TN, USA, 2019. [CrossRef]
- Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; Muller, J.-P.; et al. First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens. Environ. 2002, 83, 135–148. [Google Scholar] [CrossRef]
- Huang, S.; Dahal, D.; Liu, H.; Jin, S.; Young, C.; Li, S.; Liu, S. Spatiotemporal variation of surface shortwave forcing from fire-induced albedo change in interior Alaska. Can. J. For. Res. 2015, 45, 276–285. [Google Scholar] [CrossRef]
- Jin, Y.; Roy, D.P. Fire-induced albedo change and its radiative forcing at the surface in northern Australia. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Euskirchen, E. AmeriFlux FLUXNET-1F US-BZS Bonanza Creek Black Spruce; Ver. 3–5, AmeriFlux AMP, (Dataset); University of Alaska Fairbanks: Fairbanks, Alaska, 2022. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Subbotina, I.; Chen, H.; Bogomolova, I.; Xu, X. Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol. Biochem. 2009, 41, 210–219. [Google Scholar] [CrossRef]
- Radcliffe, D.C.; Bakker, J.D.; Churchill, D.J.; Alvarado, E.C.; Peterson, D.W.; Laughlin, M.M.; Harvey, B.J. How are long-term stand structure, fuel profiles, and potential fire behavior affected by fuel treatment type and intensity in Interior Pacific Northwest forests? For. Ecol. Manag. 2024, 553, 121594. [Google Scholar] [CrossRef]
- Epting, J.; Verbyla, D. Landscape-level interactions of prefire vegetation, burn severity, and postfire vegetation over a 16-year period in interior Alaska. Can. J. For. Res. 2005, 35, 1367–1377. [Google Scholar] [CrossRef]
- Coppoletta, M.; Merriam, K.E.; Collins, B.M. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol. Appl. 2016, 26, 686–699. [Google Scholar] [CrossRef]
- Whitman, E.; Parisien, M.A.; Thompson, D.K.; Hall, R.J.; Skakun, R.S.; Flannigan, M.D. Variability and drivers of burn severity in the northwestern Canadian boreal forest. Ecosphere 2018, 9, e02128. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S.; Mack, M.C. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Glob. Chang. Biol. 2010, 16, 1281–1295. [Google Scholar] [CrossRef]
- Uecker, T.M.; Kaspari, S.D.; Musselman, K.N.; McKenzie Skiles, S. The Post-Wildfire Impact of Burn Severity and Age on Black Carbon Snow Deposition and Implications for Snow Water Resources, Cascade Range, Washington. J. Hydrometeorol. 2020, 21, 1777–1792. [Google Scholar] [CrossRef]
- Kampf, S.K.; McGrath, D.; Sears, M.G.; Fassnacht, S.R.; Kiewiet, L.; Hammond, J.C. Increasing wildfire impacts on snowpack in the western U.S. Proc. Natl. Acad. Sci. USA 2022, 119, e2200333119. [Google Scholar] [CrossRef] [PubMed]
- Alexander, H.D.; Mack, M.C.; Goetz, S.; Beck, P.S.A.; Belshe, E.F. Implications of increased deciduous cover on stand structure and aboveground carbon pools of Alaskan boreal forests. Ecosphere 2012, 3, art45. [Google Scholar] [CrossRef]
- Hart, S.J.; Henkelman, J.; McLoughlin, P.D.; Nielsen, S.E.; Truchon-Savard, A.; Johnstone, J.F. Examining forest resilience to changing fire frequency in a fire-prone region of boreal forest. Glob. Chang. Biol. 2019, 25, 869–884. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Randerson, J.T.; Goulden, M.L.; Goetz, S.J. Post-fire changes in net shortwave radiation along a latitudinal gradient in boreal North America. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Biophysical feedback of global forest fires on surface temperature. Nat. Commun. 2019, 10, 214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Linares, M.; Ni-Meister, W. Impact of Wildfires on Land Surface Cold Season Climate in the Northern High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing. Remote Sens. 2024, 16, 1461. https://doi.org/10.3390/rs16081461
Linares M, Ni-Meister W. Impact of Wildfires on Land Surface Cold Season Climate in the Northern High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing. Remote Sensing. 2024; 16(8):1461. https://doi.org/10.3390/rs16081461
Chicago/Turabian StyleLinares, Melissa, and Wenge Ni-Meister. 2024. "Impact of Wildfires on Land Surface Cold Season Climate in the Northern High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing" Remote Sensing 16, no. 8: 1461. https://doi.org/10.3390/rs16081461
APA StyleLinares, M., & Ni-Meister, W. (2024). Impact of Wildfires on Land Surface Cold Season Climate in the Northern High-Latitudes: A Study on Changes in Vegetation, Snow Dynamics, Albedo, and Radiative Forcing. Remote Sensing, 16(8), 1461. https://doi.org/10.3390/rs16081461