Mapping Crop Evapotranspiration by Combining the Unmixing and Weight Image Fusion Methods
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area and Ground Test Station
2.2. Satellite Data
2.3. Land Cover Map
2.4. Crop Phenology
3. Methods
3.1. UWET Description
3.1.1. The Unmixing-Based Spatial Downscaling Method
3.1.2. The Date Selection of the MS-LS Image Pairs
3.1.3. The Weight-Based Temporal Prediction Method
3.2. SEBAL Model
4. Results
4.1. Evaluation of Daily ET Time Series by the UWET Model
4.2. Evaluation of ET Spatial Patterns by the UWET Model
4.2.1. The Spatial Pattern Comparison between UWET and Landsat-ET
4.2.2. The ET Spatial Distribution by UWET
4.3. UWET Accuracy Evaluation by the Situ Station Data
5. Discussion
5.1. Comparison of ET Spatial Characteristics by Three Fusion Models
5.2. Comparison of ET Temporal Characteristics by the Three Fusion Models
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at breaking point (SOLAW 2021). Available online: https://www.fao.org/documents/card/en/c/cb7654en (accessed on 19 October 2023).
- UN. The United Nations World Water Development Report 2021: Valuing Water. Available online: https://www.unwater.org/publications/un-world-water-development-report-2021 (accessed on 19 October 2023).
- Long, F.; Yang, W.; Sun, Z.; Cui, Y.; Zhang, C.; Cui, Y. Gravity satellite inversion and watershed water balance of groundwater storage changes in the Haihe Plain. J. Water Resour. 2023, 54, 255–267. [Google Scholar] [CrossRef]
- Wang, X.W.; Lei, H.M.; Li, J.D.; Huo, Z.L.; Zhang, Y.Q.; Qu, Y.P. Estimating evapotranspiration and yield of wheat and maize croplands through a remote sensing-based model. Agric. Water Manag. 2023, 282, 108294. [Google Scholar] [CrossRef]
- Xu, H.; Yang, R. Does agricultural water conservation policy necessarily reduce agricultural water extraction? Evidence from China. Agric. Water Manag. 2022, 274, 107987. [Google Scholar] [CrossRef]
- Zhang, C.J.; Long, D.; Zhang, Y.C.; Anderson, M.C.; Kustas, W.P.; Yang, Y. A decadal (2008–2017) daily evapotranspiration data set of 1 km spatial resolution and spatial completeness across the North China Plain using TSEB and data fusion. Remote Sens. Environ. 2021, 262, 22. [Google Scholar] [CrossRef]
- Liou, Y.A.; Kar, S.K. Evapotranspiration Estimation with Remote Sensing and Various Surface Energy Balance Algorithms—A Review. Energies 2014, 7, 2821–2849. [Google Scholar] [CrossRef]
- Allies, A.; Olioso, A.; Cappelaere, B.; Boulet, G.; Etchanchu, J.; Barral, H.; Bouzou Moussa, I.; Chazarin, J.-P.; Delogu, E.; Issoufou, H.B.-A.; et al. A remote sensing data fusion method for continuous daily evapotranspiration mapping at kilometric scale in Sahelian areas. J. Hydrol. 2022, 607, 127504. [Google Scholar] [CrossRef]
- Zhang, K.; Kimball, J.S.; Running, S.W. A review of remote sensing based actual evapotranspiration estimation. Wiley Interdiscip. Rev. Water 2016, 3, 834–853. [Google Scholar] [CrossRef]
- Anderson, M.C.; Yang, Y.; Xue, J.; Knipper, K.R.; Yang, Y.; Gao, F.; Hain, C.R.; Kustas, W.P.; Cawse-Nicholson, K.; Hulley, G.; et al. Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. Remote Sens. Environ. 2021, 252, 112189. [Google Scholar] [CrossRef]
- Song, E.Z.; Zhu, X.Y.; Shao, G.C.; Tian, L.J.; Zhou, Y.H.; Jiang, A.; Lu, J. Multi-Temporal Remote Sensing Inversion of Evapotranspiration in the Lower Yangtze River Based on Landsat 8 Remote Sensing Data and Analysis of Driving Factors. Remote Sens. 2023, 15, 2887. [Google Scholar] [CrossRef]
- Mokhtari, A.; Sadeghi, M.; Afrasiabian, Y.; Yu, K. OPTRAM-ET: A novel approach to remote sensing of actual evapotranspiration applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2023, 286, 113443. [Google Scholar] [CrossRef]
- Yao, Y.J.; Liang, S.L.; Li, X.L.; Zhang, Y.H.; Chen, J.Q.; Jia, K.; Zhang, X.T.; Fisher, J.B.; Wang, X.Y.; Zhang, L.L.; et al. Estimation of high-resolution terrestrial evapotranspiration from Landsat data using a simple Taylor skill fusion method. J. Hydrol. 2017, 553, 508–526. [Google Scholar] [CrossRef]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based multisensor multiresolution image fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Feng, G.; Masek, J.; Schwaller, M.; Hall, F. On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H. Spatio-temporal reflectance fusion via unmixing: Accounting for both phenological and land-cover changes. Int. J. Remote Sens. 2014, 35, 6213–6233. [Google Scholar] [CrossRef]
- Gevaert, C.M.; García-Haro, F.J. A comparison of STARFM and an unmixing-based algorithm for Landsat and MODIS data fusion. Remote Sens. Environ. 2015, 156, 34–44. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, J.; Zhu, X.; Pan, Y.; Liu, H.; Yuan, Z.; Yun, Y. An Improved STARFM with Help of an Unmixing-Based Method to Generate High Spatial and Temporal Resolution Remote Sensing Data in Complex Heterogeneous Regions. Sensors 2016, 16, 207. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A flexible spatiotemporal method for fusing satellite images with different resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Guo, D.; Shi, W.; Hao, M.; Zhu, X. FSDAF 2.0: Improving the performance of retrieving land cover changes and preserving spatial details. Remote Sens. Environ. 2020, 248, 111973. [Google Scholar] [CrossRef]
- Li, X.; Foody, G.M.; Boyd, D.S.; Ge, Y.; Zhang, Y.; Du, Y.; Ling, F. SFSDAF: An enhanced FSDAF that incorporates sub-pixel class fraction change information for spatio-temporal image fusion. Remote Sens. Environ. 2020, 237, 111537. [Google Scholar] [CrossRef]
- Zhu, X.; Cai, F.; Tian, J.; Williams, T.K. Spatiotemporal Fusion of Multisource Remote Sensing Data: Literature Survey, Taxonomy, Principles, Applications, and Future Directions. Remote Sens. 2018, 10, 527. [Google Scholar] [CrossRef]
- Huang, B.; Song, H. Spatiotemporal Reflectance Fusion via Sparse Representation. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3707–3716. [Google Scholar] [CrossRef]
- Wang, S.; Wang, C.Z.; Zhang, C.L.; Xue, J.Y.; Wang, P.; Wang, X.W.; Wang, W.S.; Zhang, X.; Li, W.C.; Huang, G.H.; et al. A classification-based spatiotemporal adaptive fusion model for the evaluation of remotely sensed evapotranspiration in heterogeneous irrigated agricultural area. Remote Sens. Environ. 2022, 273, 16. [Google Scholar] [CrossRef]
- Mingquan, W.; Zheng, N.; Changyao, W.; Chaoyang, W.; Li, W. Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. J. Appl. Remote Sens. 2012, 6, 063507. [Google Scholar] [CrossRef]
- Emelyanova, I.V.; McVicar, T.R.; Van Niel, T.G.; Li, L.T.; van Dijk, A.I.J.M. Assessing the accuracy of blending Landsat–MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remote Sens. Environ. 2013, 133, 193–209. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, Y.; Tong, X.; Atkinson, P.M. Virtual image pair-based spatio-temporal fusion. Remote Sens. Environ. 2020, 249, 112009. [Google Scholar] [CrossRef]
- Yang, Z.; Pan, X.; Liu, Y.B.; Tansey, K.; Yuan, J.; Wang, Z.C.; Liu, S.Y.; Yang, Y.B. Evaluation of spatial downscaling for satellite retrieval of evapotranspiration from the nonparametric approach in an arid area. J. Hydrol. 2024, 628, 130538. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agric. For. Meteorol. 2014, 186, 1–11. [Google Scholar] [CrossRef]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y.; et al. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef]
- Carpintero, E.; Anderson, M.C.; Andreu, A.; Hain, C.; Gao, F.; Kustas, W.P.; González-Dugo, M.P. Estimating Evapotranspiration of Mediterranean Oak Savanna at Multiple Temporal and Spatial Resolutions. Implications for Water Resources Management. Remote Sens. 2021, 13, 3701. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Gao, F.; Hain, C.R.; Kustas, W.P. A data fusion approach for mapping daily evapotranspiration at field scale. Water Resour. Res. 2013, 49, 4672–4686. [Google Scholar] [CrossRef]
- Qiu, R.J.; Katul, G.G.; Wang, J.T.; Xu, J.Z.; Kang, S.Z.; Liu, C.W.; Zhang, B.Z.; Li, L.G.; Cajucom, E.P. Differential response of rice evapotranspiration to varying patterns of warming. Agric. For. Meteorol. 2021, 298, 108293. [Google Scholar] [CrossRef]
- Yang, Y.; Roderick, M.L.; Guo, H.; Miralles, D.G.; Zhang, L.; Fatichi, S.; Luo, X.; Zhang, Y.; McVicar, T.R.; Tu, Z.; et al. Evapotranspiration on a greening Earth. Nat. Rev. Earth Environ. 2023, 4, 626–641. [Google Scholar] [CrossRef]
- Li, S.J.; Wang, G.J.; Sun, S.L.; Hagan, D.F.T.; Chen, T.X.; Dolman, H.; Liu, Y. Long-term changes in evapotranspiration over China and attribution to climatic drivers during 1980–2010. J. Hydrol. 2021, 595, 126037. [Google Scholar] [CrossRef]
- Liu, F.; Shen, Y.; Cao, J.; Zhang, Y. A dataset of water, heat, and carbon fluxes over the winter wheat-summer maize croplands in Luancheng during 2013–2017. Sci. Data Bank 2023, 8, 1–10. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, Q.; Di, L.; Tang, J.; Yang, J.; Wu, H.; Qin, Y.; Su, R.; Zhou, W. Phenological metrics-based crop classification using HJ-1 CCD images and Landsat 8 imagery. Int. J. Digit. Earth 2018, 11, 1219–1240. [Google Scholar] [CrossRef]
- Zhang, X.; Cao, Z.; Yang, D.; Wang, Q.; Wang, X.; Xiong, Q. Extraction and spatio-temporal analysis of county-level crop planting patterns based on HJ-1 CCD. Trans. Chin. Soc. Agric. Eng. 2021, 37, 168–181. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Zeng, L.L.; Wardlow, B.D.; Xiang, D.X.; Hu, S.; Li, D.R. A review of vegetation phenological metrics extraction using time-series, multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [Google Scholar] [CrossRef]
- Gao, H.S.; Zhang, X.C.; Wang, X.G.; Zeng, Y.H. Phenology-Based Remote Sensing Assessment of Crop Water Productivity. Water 2023, 15, 329. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL)—1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Pelgrum, H.; Wang, J.; Ma, Y.; Moreno, J.F.; Roerink, G.J.; van der Wal, T. A remote sensing surface energy balance algorithm for land (SEBAL)—2. Validation. J. Hydrol. 1998, 212, 213–229. [Google Scholar] [CrossRef]
- Liang, S.L. Narrowband to broadband conversions of land surface albedo I Algorithms. Remote Sens. Environ. 2001, 76, 213–238. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Allan, R.; Pereira, L.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
Dataset | Spatial Resolution | DOY of the Acquisition Time | Application | |||
---|---|---|---|---|---|---|
2019 | 2020 | 2021 | ||||
Sentinel-2 | 10 m | 248–365 | 1–177 248–365 | 1–177 | Land cover map Crop phenology | |
Landsat | Landsat 8 | 30 m | 300, 332, 364 | 31, 47, 63, 79, 95, 111, 143, 287, 351 | 1, 17, 33, 49, 81, 97, 129, 145, 177 | ET estimation |
Landsat 9 | ||||||
MODIS | MOD09GA | 500 m | 274–365 | 1–176 275–365 | 1–170 | |
MCD43A3 | 500 m | |||||
MOD11A1 | 1 km |
Bare Soil | Building | Water | Other Vegetation | Winter Wheat | Total | User Accuracy | |
---|---|---|---|---|---|---|---|
Bare soil | 34 | 5 | 0 | 0 | 0 | 39 | 87.18% |
Building | 6 | 35 | 0 | 0 | 0 | 41 | 85.37% |
Water | 0 | 0 | 8 | 0 | 0 | 8 | 100% |
Other vegetation | 0 | 0 | 0 | 21 | 4 | 25 | 84.00% |
Winter wheat | 0 | 0 | 0 | 3 | 156 | 159 | 98.11% |
Total | 40 | 40 | 8 | 24 | 160 | 272 | |
Producer accuracy | 85.00% | 87.50% | 100% | 87.50% | 97.5% | 93.38% |
Bare Soil | Building | Water | Other Vegetation | Winter Wheat | Total | User Accuracy | |
---|---|---|---|---|---|---|---|
Bare soil | 8 | 1 | 0 | 0 | 0 | 9 | 88.89% |
Building | 2 | 9 | 0 | 0 | 0 | 11 | 81.82% |
Water | 0 | 0 | 2 | 0 | 0 | 2 | 100% |
Other vegetation | 0 | 0 | 0 | 6 | 1 | 7 | 85.71% |
Winter wheat | 0 | 0 | 0 | 0 | 39 | 39 | 100% |
Total | 10 | 10 | 2 | 6 | 40 | 68 | |
Producer accuracy | 80.00% | 90.00% | 100% | 100% | 97.50% | 94.12% |
Phenological Period | Sowing Period | Elongation Period | Heading and Milky Period | Maturity and Harvest Period |
---|---|---|---|---|
DOY (2019–2020) | 274–291 | 292–103 | 104–156 | 157–172 |
DOY (2020–2021) | 275–298 | 299–109 | 110–121 | 122–171 |
Indicator | 28 November 2019 | 20 April 2020 | 22 May 2020 | |
---|---|---|---|---|
Filed1 | R | 0.31 | 0.78 | 0.87 |
RMSE (mm/d) | 0.50 mm/day | 1.52 mm/day | 1.69 mm/day | |
MAE (mm/d) | 0.33 mm/day | 1.33 mm/day | 1.58 mm/day | |
Filed2 | R | 0.37 | 0.74 | 0.80 |
RMSE (mm/d) | 1.06 mm/day | 0.97 mm/day | 1.36 mm/day | |
MAE (mm/d) | 0.89 mm/day | 0.74 mm/day | 1.07 mm/day |
Region | Indicators | STARFM | STRUM | UWET |
---|---|---|---|---|
The whole region | R | 0.83 | 0.80 | 0.80 |
RMSE (mm/d) | 1.18 | 1.41 | 1.36 | |
MAE (mm/d) | 0.94 | 1.13 | 1.07 | |
The Wheat region | R | 0.31 | 0.62 | 0.60 |
RMSE (mm/d) | 0.83 | 0.87 | 0.85 | |
MAE (mm/d) | 0.68 | 0.77 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Gao, H.; Shi, L.; Hu, X.; Zhong, L.; Bian, J. Mapping Crop Evapotranspiration by Combining the Unmixing and Weight Image Fusion Methods. Remote Sens. 2024, 16, 2414. https://doi.org/10.3390/rs16132414
Zhang X, Gao H, Shi L, Hu X, Zhong L, Bian J. Mapping Crop Evapotranspiration by Combining the Unmixing and Weight Image Fusion Methods. Remote Sensing. 2024; 16(13):2414. https://doi.org/10.3390/rs16132414
Chicago/Turabian StyleZhang, Xiaochun, Hongsi Gao, Liangsheng Shi, Xiaolong Hu, Liao Zhong, and Jiang Bian. 2024. "Mapping Crop Evapotranspiration by Combining the Unmixing and Weight Image Fusion Methods" Remote Sensing 16, no. 13: 2414. https://doi.org/10.3390/rs16132414
APA StyleZhang, X., Gao, H., Shi, L., Hu, X., Zhong, L., & Bian, J. (2024). Mapping Crop Evapotranspiration by Combining the Unmixing and Weight Image Fusion Methods. Remote Sensing, 16(13), 2414. https://doi.org/10.3390/rs16132414