Wavelet Transform-Based Inertial Neural Network for Spatial Positioning Using Inertial Measurement Units
Abstract
:1. Introduction
2. Architecture
2.1. Overview
2.2. Wavelet Transform
- The Fourier transform requires the assumption that the signal is stationary, whereas IMU data in practical applications are usually non-stationary and contains many signal transients. The wavelet transform does not require the signal stationarity assumption and can handle transient signals well.
- The wavelet transform provides joint time–frequency information, meaning it can reveal the frequency changes occurring at specific times, while the Fourier transform cannot provide this time localization information. It can locate both time and frequency and is highly sensitive to signal transients, which the Fourier transform cannot represent well.
- The wavelet transform can analyze signals at different scales, enabling it to capture both coarse and fine signal features. This is particularly useful for analyzing signals with multi-scale structures or rapidly changing details.
2.3. Neural Network
3. Experiments
3.1. Dataset Collection
3.2. Implementation
3.3. Baseline Methods
- TLIO: The TLIO algorithm is the state-of-the-art inertial odometry algorithm. It uses a ResNet network to regress 3D displacements and their corresponding covariances, tightly coupled with an EKF to estimate position, orientation, velocity, and IMU bias using only pedestrian IMU data.
- RNIN: RNIN is a part of the RNIN-VIO algorithm, which is the state-of-the-art visual–inertial odometry algorithm. We removed the visual odometry part and only used the part of the inertial neural network named RNIN. It uses a ResNet and LSTM neural network model to combine relative and absolute loss functions, achieving stronger robustness.
3.4. Evaluation Metrics
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conlin, W.T. Review Paper: Inertial Measurement. arXiv 2017, arXiv:1708.04325. [Google Scholar]
- Zhao, W.; Cheng, Y.; Zhao, S.; Hu, X.; Rong, Y.; Duan, J.; Chen, J. Navigation Grade MEMS IMU for A Satellite. Micromachines 2021, 12, 151. [Google Scholar] [CrossRef] [PubMed]
- White, A.M.; Gardner, W.P.; Borsa, A.A.; Argus, D.F.; Martens, H.R. A Review of GNSS/GPS in Hydrogeodesy: Hydrologic Loading Applications and Their Implications for Water Resource Research. Water Resour. Res. 2022, 58, e2022WR032078. [Google Scholar] [CrossRef]
- Gyagenda, N.; Hatilima, J.V.; Roth, H.; Zhmud, V. A review of GNSS-independent UAV navigation techniques. Robot. Auton. Syst. 2022, 152, 104069. [Google Scholar] [CrossRef]
- Huang, G. Visual-Inertial Navigation: A Concise Review. arXiv 2019, arXiv:1906.02650. [Google Scholar]
- Servières, M.; Renaudin, V.; Dupuis, A.; Antigny, N. Visual and Visual-Inertial SLAM: State of the Art, Classification, and Experimental Benchmarking. J. Sens. 2021, 2021, 1–26. [Google Scholar] [CrossRef]
- European Commission; Joint Research Centre. Assessing Alternative Positioning, Navigation, and Timing Technologies for Potential Deployment in the EU; European Commission: Luxembourg, 2023. [Google Scholar]
- Qin, T.; Li, P.; Shen, S. VINS-Mono: A Robust and Versatile Monocular Visual-Inertial State Estimator. IEEE Trans. Robot. 2018, 34, 1004–1020. [Google Scholar] [CrossRef]
- Campos, C.; Elvira, R.; Rodriguez, J.J.G.; Montiel, J.M.; Tardos, J.D. ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE Trans. Robot. 2021, 37, 1874–1890. [Google Scholar] [CrossRef]
- Qin, T.; Pan, J.; Cao, S.; Shen, S. A General Optimization-based Framework for Local Odometry Estimation with Multiple Sensors. arXiv 2019, arXiv:1901.03638. [Google Scholar]
- Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–3 October 2015; pp. 298–304. [Google Scholar] [CrossRef]
- Gao, G.; Gao, B.; Gao, S.; Hu, G.; Zhong, Y. A Hypothesis Test-Constrained Robust Kalman Filter for INS/GNSS Integration With Abnormal Measurement. IEEE Trans. Veh. Technol. 2023, 72, 1662–1673. [Google Scholar] [CrossRef]
- Gao, B.; Hu, G.; Zhu, X.; Zhong, Y. A Robust Cubature Kalman Filter with Abnormal Observations Identification Using the Mahalanobis Distance Criterion for Vehicular INS/GNSS Integration. Sensors 2019, 19, 5149. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Gao, B.; Zhong, Y.; Ni, L.; Gu, C. Robust Unscented Kalman Filtering With Measurement Error Detection for Tightly Coupled INS/GNSS Integration in Hypersonic Vehicle Navigation. IEEE Access 2019, 7, 151409–151421. [Google Scholar] [CrossRef]
- Wu, X.; Xiao, B.; Wu, C.; Guo, Y.; Li, L. Factor graph based navigation and positioning for control system design: A review. Chin. J. Aeronaut. 2022, 35, 25–39. [Google Scholar] [CrossRef]
- Beuchert, J.; Camurri, M.; Fallon, M. Factor Graph Fusion of Raw GNSS Sensing with IMU and Lidar for Precise Robot Localization without a Base Station. arXiv 2023, arXiv:2209.14649. [Google Scholar]
- Lyu, P.; Wang, B.; Lai, J.; Bai, S.; Liu, M.; Yu, W. A Factor Graph Optimization Method for High-Precision IMU-Based Navigation System. IEEE Trans. Instrum. Meas. 2023, 72, 9509712. [Google Scholar] [CrossRef]
- Gao, B.; Gao, S.; Zhong, Y.; Hu, G.; Gu, C. Interacting multiple model estimation-based adaptive robust unscented Kalman filter. Int. J. Control. Autom. Syst. 2017, 15, 2013–2025. [Google Scholar] [CrossRef]
- Gao, B.; Hu, G.; Zhong, Y.; Zhu, X. Cubature Kalman Filter With Both Adaptability and Robustness for Tightly-Coupled GNSS/INS Integration. IEEE Sens. J. 2021, 21, 14997–15011. [Google Scholar] [CrossRef]
- Chen, C.; Lu, X.; Markham, A.; Trigoni, N. IONet: Learning to Cure the Curse of Drift in Inertial Odometry. Proc. AAAI Conf. Artif. Intell. 2018, 32, 6468–6476. [Google Scholar] [CrossRef]
- Kang, W.; Han, Y. SmartPDR: Smartphone-Based Pedestrian Dead Reckoning for Indoor Localization. IEEE Sens. J. 2015, 15, 2906–2916. [Google Scholar] [CrossRef]
- Foxlin, E. Pedestrian Tracking with Shoe-Mounted Inertial Sensors. IEEE Comput. Graph. Appl. 2005, 25, 38–46. [Google Scholar] [CrossRef]
- Brajdic, A.; Harle, R. Walk detection and step counting on unconstrained smartphones. In Proceedings of the 2013 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Zurich, Switzerland, 8–12 September 2013; pp. 225–234. [Google Scholar] [CrossRef]
- Yan, H.; Shan, Q.; Furukawa, Y. RIDI: Robust IMU Double Integration. In Computer Vision—ECCV 2018; Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y., Eds.; Series Title: Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11217, pp. 641–656. [Google Scholar] [CrossRef]
- Herath, S.; Yan, H.; Furukawa, Y. RoNIN: Robust Neural Inertial Navigation in the Wild: Benchmark, Evaluations, & New Methods. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Virtual, 31 May–31 August 2020; pp. 3146–3152. [Google Scholar] [CrossRef]
- Liu, W.; Caruso, D.; Ilg, E.; Dong, J.; Mourikis, A.I.; Daniilidis, K.; Kumar, V.; Engel, J. TLIO: Tight Learned Inertial Odometry. IEEE Robot. Autom. Lett. 2020, 5, 5653–5660. [Google Scholar] [CrossRef]
- Chen, D.; Wang, N.; Xu, R.; Xie, W.; Bao, H.; Zhang, G. RNIN-VIO: Robust Neural Inertial Navigation Aided Visual-Inertial Odometry in Challenging Scenes. In Proceedings of the 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Bari, Italy, 4–8 October 2021; pp. 275–283. [Google Scholar] [CrossRef]
- Sun, S.; Melamed, D.; Kitani, K. IDOL: Inertial Deep Orientation-Estimation and Localization. Proc. AAAI Conf. Artif. Intell. 2021, 35, 6128–6137. [Google Scholar] [CrossRef]
- Hou, X.; Bergmann, J.H. HINNet: Inertial navigation with head-mounted sensors using a neural network. Eng. Appl. Artif. Intell. 2023, 123, 106066. [Google Scholar] [CrossRef]
- Mao, Y.; Zhong, Y.; Gao, Y.; Wang, Y. A Weak SNR Signal Extraction Method for Near-Bit Attitude Parameters Based on DWT. Actuators 2022, 11, 323. [Google Scholar] [CrossRef]
- Severin, I.C.; Dobrea, D.M. 6DOF Inertial IMU Head Gesture Detection: Performance Analysis Using Fourier Transform and Jerk-Based Feature Extraction. In Proceedings of the 2020 IEEE Microwave Theory and Techniques in Wireless Communications (MTTW), Riga, Latvia, 1–2 October 2020; Volume 1, pp. 118–123. [Google Scholar] [CrossRef]
- Xu, W.; Cai, Y.; He, D.; Lin, J.; Zhang, F. FAST-LIO2: Fast Direct LiDAR-Inertial Odometry. IEEE Trans. Robot. 2022, 38, 2053–2073. [Google Scholar] [CrossRef]
Device | Type | Specification | Functions |
---|---|---|---|
LiDAR | Livox Avia | 20 Hz, H-FOV: 70.4°, V-FOV: 77.2° | Ground-truth data collection |
IMU | BMI088 | 200 Hz, 6-axis | Inertial data collection |
RTK | QianXun SE Lite | H: ±(8 + 1 × 10) mm, V: ±(15 + 1 × 10) mm | Ground control points for evaluating and improving the accuracy of the ground-truth data |
Computer | ×86 | RTX3090 24 GB, i7-12700k, 64 GB memory | Training and testing the algorithm |
Method | Error (m) | ||
---|---|---|---|
x | y | z | |
TLIO | 1.243 | 1.107 | 0.212 |
RNIN | 0.949 | 1.355 | 0.180 |
Ours | 0.927 | 0.755 | 0.192 |
Method | ATE(m) | RTE(m) | Drift(%) | |||
---|---|---|---|---|---|---|
Mean | Median | Mean | Median | Mean | Median | |
TLIO | 1.932 | 1.962 | 0.085 | 0.085 | 1.732 | 1.832 |
RNIN | 1.927 | 1.970 | 0.080 | 0.080 | 1.628 | 1.588 |
Ours | 1.542 | 1.351 | 0.080 | 0.082 | 1.391 | 1.256 |
Method | ATE (m) | RTE (m) | Drift (%) | |||
---|---|---|---|---|---|---|
Mean | Median | Mean | Median | Mean | Median | |
ResNet | 2.131 | 2.068 | 0.084 | 0.085 | 1.799 | 1.891 |
DResNet+FT | 2.055 | 1.803 | 0.085 | 0.087 | 1.771 | 1.383 |
DResNet+WT | 1.542 | 1.328 | 0.080 | 0.082 | 1.386 | 1.274 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Y.; Gong, J.; Li, Y.; Zhang, G.; Yang, B.; Yang, Z. Wavelet Transform-Based Inertial Neural Network for Spatial Positioning Using Inertial Measurement Units. Remote Sens. 2024, 16, 2326. https://doi.org/10.3390/rs16132326
Tang Y, Gong J, Li Y, Zhang G, Yang B, Yang Z. Wavelet Transform-Based Inertial Neural Network for Spatial Positioning Using Inertial Measurement Units. Remote Sensing. 2024; 16(13):2326. https://doi.org/10.3390/rs16132326
Chicago/Turabian StyleTang, Yong, Jianhua Gong, Yi Li, Guoyong Zhang, Banghui Yang, and Zhiyuan Yang. 2024. "Wavelet Transform-Based Inertial Neural Network for Spatial Positioning Using Inertial Measurement Units" Remote Sensing 16, no. 13: 2326. https://doi.org/10.3390/rs16132326
APA StyleTang, Y., Gong, J., Li, Y., Zhang, G., Yang, B., & Yang, Z. (2024). Wavelet Transform-Based Inertial Neural Network for Spatial Positioning Using Inertial Measurement Units. Remote Sensing, 16(13), 2326. https://doi.org/10.3390/rs16132326