Massive Sea-Level-Driven Marsh Migration and Implications for Coastal Resilience along the Texas Coast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location
2.2. Historical Mapping
3. Results
4. Discussion
4.1. Texas Marsh Health
4.2. Texas Marsh Migration and Erosion
4.3. Marsh Resilience across the United States
4.4. Implications for Ecosystem Functions and Resilience Management
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D.; et al. Sea level change. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the International Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, A.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Kemp, A.C.; Horton, B.P.; Culver, S.J.; Corbett, D.R.; van de Plassche, O.; Gehrels, W.R.; Douglas, B.C.; Parnell, A.C. Timing and magnitude of recent accelerated sea-level rise (North Carolina, United States). Geology 2009, 37, 1035–1038. [Google Scholar] [CrossRef]
- Al Mukaimi, M.E.; Dellapenna, T.M.; Williams, J.R. Enhanced land subsidence in Galveston Bay, Texas: Interaction between sediment accumulation rates and relative sea level rise. Estuar. Coast. Shelf Sci. 2018, 207, 183–193. [Google Scholar] [CrossRef]
- Sweet, W.V.; Kopp, R.E.; Weaver, C.P.; Obeysekera, J.; Theiler, E.R.; Zervas, C. Global and Regional Sea-Level Rise Scenarios for the United States; Technical Report NOS CO-OPS 083; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2017. [Google Scholar]
- Yoskowitz, D.; Carollo, C.; Pollack, J.B.; Santos, C.; Welder, K. Integrated ecosystem services assessment: Valuation of changes due to sea level rise in Galveston Bay, Texas, USA. Integr. Environ. Assess. Manag. 2017, 13, 431–443. [Google Scholar] [CrossRef] [PubMed]
- Raabe, E.A.; Stumpf, R.P. Expansion of tidal marsh in response to sea-level rise: Gulf Coast of Florida, USA. Estuar. Coast 2016, 39, 145–157. [Google Scholar] [CrossRef]
- Schieder, N.W.; Walters, D.C.; Kirwan, M.L. Massive upland to wetland conversion compensated for historical marsh loss in Chesapeake Bay, USA. Estuar. Coast 2018, 41, 940–951. [Google Scholar] [CrossRef]
- Kearney, M.S.; Russel, E.G.; Stevenson, J.C. Marsh loss in Nanticoke Estuary, Chesapeake Bay. Geogr. Rev. 1988, 78, 205–220. [Google Scholar] [CrossRef]
- Kearney, M.S.; Stevenson, J.C. Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. J. Coast. Res. 1991, 7, 403–415. [Google Scholar]
- DeLaune, R.D.; Patrick, W.H., Jr.; Buresh, R.J. Sedimentation rates determined by 137Cs dating in a rapidly accreting salt marsh. Nature 1978, 275, 532–533. [Google Scholar] [CrossRef]
- Stevenson, J.C.; Kearney, M.S.; Pendleton, E.C. Sedimentation and erosion in a Chesapeake Bay brackish marsh system. Mar. Geol. 1986, 67, 213–235. [Google Scholar] [CrossRef]
- Reed, D.J. The response of coastal marshes to sea-level rise: Survival or submergence? Earth Surf. Process. Landf. 1995, 20, 39–48. [Google Scholar] [CrossRef]
- Chmura, G.L.; Hung, G.A. Controls on salt marsh accretion: A test in salt marshes of Eastern Canada. Estuaries 2004, 27, 70–81. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Temmerman, S.; Skeehan, E.E.; Guntenspergen, G.R.; Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change 2016, 6, 253–260. [Google Scholar] [CrossRef]
- Fagherazzi, S.; Mariotti, G.; Wiberg, P.L.; McGlathery, K.J. Marsh collapse does not require sea level rise. Oceanography 2013, 26, 70–77. [Google Scholar] [CrossRef]
- Schwimmer, R.A. Rates and processes of marsh shoreline erosion in Rehoboth Bay, Delaware, USA. J. Coast. Res. 2001, 17, 678–683. [Google Scholar]
- Wilson, C.A.; Allison, M.A. An equilibrium profile model for retreating marsh shorelines in southeast Louisiana. Estuar. Coast. Shelf Sci. 2008, 80, 483–494. [Google Scholar] [CrossRef]
- Schieder, N.W.; Kirwan, M.L. Sea-level driven acceleration in coastal forest retreat. Geology 2019, 47, 1151–1155. [Google Scholar] [CrossRef]
- Feagin, R.A.; Martinez, M.L.; Mendoza-Gonzalez, G.; Costanza, R. Salt marsh zonal migration and ecosystem service change in response to global sea level rise: A case study from an urban region. Ecol. Soc. 2010, 15, 14. [Google Scholar] [CrossRef]
- Enwright, N.M.; Griffith, K.T.; Osland, M.J. Barriers to and opportunities for landward migration of coastal wetlands with sea-level rise. Front. Ecol. Environ. 2016, 14, 307–316. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Megonigal, J.P. Tidal wetland stability in the face of human impacts and sea-level rise. Nature 2013, 504, 53–60. [Google Scholar] [CrossRef]
- Titus, J.G.; Park, R.A.; Leatherman, S.P.; Weggel, J.R.; Greene, M.S.; Mausel, P.W.; Brown, S.; Gaunt, G.; Trehan, M.; Yohe, G. Greenhouse effect and sea level rise: The cost of holding back the sea. Coast. Manag. 1991, 19, 171–204. [Google Scholar] [CrossRef]
- Barbier, E.B. Natural barriers to natural disasters: Replanting mangroves after the tsunami. Front. Ecol. Environ. 2006, 4, 124–131. [Google Scholar] [CrossRef]
- Barbier, E.B. Progress and challenges in valuing coastal and marine ecosystem services. Rev. Environ. Econ. Policy 2012, 6, 1. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis and response to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Koch, E.W.; Barbier, E.B.; Silliman, B.R.; Reed, D.J.; Perillo, G.M.E.; Hacker, S.D.; Granek, E.F.; Primavera, J.H.; Muthiga, N.; Polasky, S.; et al. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Front. Ecol. Environ. 2009, 7, 29–37. [Google Scholar] [CrossRef]
- Montagna, P.; Ward, G.; Vaughan, B. The importance and problem of freshwater inflows to Texas estuaries. In Water Policy in Texas: Responding to the Rise of Scarcity; Griffin, R.C., Ed.; The RFF Press: Washington, DC, USA, 2011; pp. 107–127. [Google Scholar]
- Zetler, B.; Hansen, D. Tides in the Gulf of Mexico: A review and a proposed program. Bull. Mar. Sci. 1970, 20, 57–69. [Google Scholar]
- Eleuterius, L.N.; Eleuterius, C.K. Tide levels and salt marsh zonation. Bull. Mar. Sci. 1979, 29, 2471–2485. [Google Scholar]
- Stout, J.P. The Ecology of Irregularly Flooded Salt Marshes of the Northeastern Gulf of Mexico: A Community Profile; US Department of the Interior, Fish and Wildlife Service: Washington, DC, USA, 1984.
- Wang, F.C. Dynamics of intertidal marshes near shallow estuaries in Louisiana. Wetl. Ecol. Manag. 1997, 5, 131–143. [Google Scholar] [CrossRef]
- Kunza, A.E.; Pennings, S.C. Patterns of plant diversity in Georgia and Texas salt marshes. Estuar. Coast 2008, 31, 673–681. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Fasullo, J.; Galloway, D.L. Land subsidence contributions to relative sea level rise at tide gauge Galveston Pier 21, Texas. Sci. Rep. 2020, 10, 17905. [Google Scholar] [CrossRef]
- Shalowitz, A.L. Shore and Sea Boundaries. U.S. Department of Commerce; U.S. Government Printing Office: Washington, DC, USA, 1964; Publication 10-1; Volume 2.
- Crowell, M.; Leatherman, S.P.; Buckley, M.K. Historical shoreline change: Error analysis and mapping accuracy. JCR 1991, 7, 839–852. [Google Scholar]
- Swartwout, D.J. An Evaluation of the National Wetlands Inventory in Massachusetts. Master’s Thesis, University of Massachusetts, Amherst, MA, USA, 1982. [Google Scholar]
- Hefner, J.M.; Storrs, C.G. Classification and inventory of wetlands in the Southern Appalachian Region. Wat. Air Soil Poll. 1994, 77, 209–216. [Google Scholar] [CrossRef]
- Tiner, R.W. Assessing cumulative loss of wetland functions in the Nanticoke River watershed using enhanced National Wetlands Inventory data. Wetlands 2005, 25, 405–419. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Alexander, L.C.; Todd, M.J. Temporal and spatial patterns of wetland extent influence variability of surface water connectivity in the Prairie Pothole Region, United States. Landsc. Ecol. 2016, 31, 805–824. [Google Scholar] [CrossRef]
- Borchert, S.M.; Osland, M.J.; Enwright, N.M.; Griffith, K.T. Coastal wetland adaptation to sea level rise: Quantifying potential for landward migration and coastal squeeze. J. Appl. Ecol. 2018, 55, 2876–2887. [Google Scholar] [CrossRef]
- McKee, K.L.; Patrick, W.H. The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review. Estuaries 1988, 11, 143–151. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Guidelines for Preparing Economic Analyses; EPA 240-R-00-003; United States Environmental Protection Agency, Office of the Administration: Washington, DC, USA, 2000. Available online: http://yosemite.epa.gov/ee/epa/eed.nsf/webpages/Guidlines.html/$file/Guidlines.pdf (accessed on 5 August 2023).
- Galveston Country Appraisal District. 2009. Available online: http://www.galvestoncad.org/PA/Shapeidx/shapes.htm (accessed on 5 August 2023).
- National Oceanic and Atmospheric Administration. Discounting and the Treatment of Uncertainty in Natural Resource Damage Assessment; Technical Paper 99; Damage Assessment and Restoration Program, National Oceanic and Atmospheric Administration (NOAA): Silver Spring, MD, USA, 1999. Available online: http://www.darrp.noaa.gov/economics/pdf/discpdf2.pdf (accessed on 5 August 2023).
- Brander, L.M.; Florax, R.J.G.M.; Vermaat, J.E. The empirics of wetland evaluation: A comprehensive summary and meta-analysis of the literature. Environ. Resour. Econ. 2006, 33, 223–250. [Google Scholar] [CrossRef]
- Woodward, R.T.; Wui, Y.-S. The economic value of wetland services: A meta-analysis. Ecol. Econ. 2001, 37, 257–270. [Google Scholar] [CrossRef]
- Bockstael, N.E.; Freeman, A.M., III; Kopp, R.J.; Portney, P.R.; Smith, V.K. On measuring economic values for nature. Environ. Sci. Technol. 2000, 34, 1384–1389. [Google Scholar] [CrossRef]
- Smith, J.A.M. The role of Phragmites australis in mediating inland salt marsh migration in a Mid-Atlantic Estuary. PLoS ONE 2013, 8, e65091. [Google Scholar] [CrossRef]
- Schepers, L.; Kirwan, M.L.; Guntenspergen, G.R.; Temmerman, S. Spatio-temporal development of vegetation die-off in a submerging coastal marsh. Limnol. Oceanogr. 2017, 62, 137–150. [Google Scholar] [CrossRef]
- McGowen, J.H.; Brown, L.F.; Evan, T.J.; Fisher, W.L.; Groat, D.G. Environmental Geologic Atlas of the Texas Coastal Zone—Bay City—Freeport Area; University of Texas, Bureau of Economic Geology: Austin, TX, USA, 1976. [Google Scholar]
- Vaughan, R.J. Disturbance in a Stressed Environment: Bank Vegetation of the Gulf Intracoastal Waterway at Cedar Lake, Texas. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 1977. [Google Scholar]
- White, W.A.; Morton, R.A. Wetland losses related to fault movement and hydrocarbon production, Southeastern Texas Coast. J. Coast. Res. 1997, 13, 1305–1320. [Google Scholar]
- White, W.A.; Tremblay, T.A. Submergence of wetlands as a result of human-induced subsidence and faulting along the upper Texas Gulf Coas. J. Coast. Res. 1995, 11, 788–807. [Google Scholar]
- Byearne, R.J.; Anderson, G.L. Shoreline Erosion in Tidewater Virginia. Special Report in Applied Marine Science and Ocean Engineering 111; Virginia Institute of Marine Science: Gloucester Pt, VA, USA, 1978; p. 102. Available online: http://ccrm.vims.edu/gis_data_maps/shoreline_inventories/virginia/scan_reports/TidewaterShorelineErosion.pdf (accessed on 5 August 2023).
- Rosen, P.S. Erosion susceptibility of the Virginia Chesapeake Bay shoreline. Mar. Geol. 1980, 34, 45–59. [Google Scholar] [CrossRef]
- Corbett, D.R.; Walsh, J.P.; Riggs, S.R.; Ames, D.V.; Culver, S.J. Shoreline Change within the Albemarle-Pamlico Estuarine System, North Carolina. 1907–2007 Centennial. 2008. Available online: https://www.ecu.edu/cs-acad/icsp/upload/EstuarineShorelineChagneDec2008.pdf (accessed on 5 August 2023).
- Phillips, J.D. Spatial analysis of shoreline erosion, Delaware Bay, New Jersey. A. Assoc. Am. Geog. 1986, 76, 50–62. [Google Scholar] [CrossRef]
- Riggs, S.R. Shoreline Erosion in North Carolina Estuaries: The Soundfront Series UNC-SG_01-11; North Carolina Sea Grant: Raleigh, North Carolina, 2001; Pub. No. N.C., UNC-SG-01-11; p. 69. [Google Scholar]
- Santschi, P.H.; Oktay, S.D.; Cifuentes, L. Carbon isotopes and iodine concentrations in a Mississippi River delta core recording land use, sediment transport, and dam building in the river’s drainage basin. Mar. Environ. Res. 2007, 63, 278–290. [Google Scholar] [CrossRef]
- Hussein, A.H. Modeling of sea-level rise and deforestation in submerging coastal ultisols of Chesapeake Bay. Soil Sci. Soc. Am. J. 2009, 73, 185. [Google Scholar] [CrossRef]
- DeLaune, R.D.; Nyman, J.A.; Patrick, W.H., Jr. Peat collapse, ponding and wetland loss in a rapidly submerging coastal marsh. J Coast. Res. 1994, 10, 1021–1030. [Google Scholar]
- Nyman, J.A.; DeLaune, R.D.; Roberts, H.H.; Patrick, W.H., Jr. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Mar. Ecol. Prog. Ser. 1993, 96, 269–279. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Guntenspergen, G.R. Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. J. Ecol. 2012, 100, 764–770. [Google Scholar] [CrossRef]
- Schepers, L.; Kirwan, M.L.; Guntenspergen, G.R.; Temmerman, S. Evaluating indicators of marsh vulnerability to sea level rise along a historical marsh loss gradient. Earth Surf. Process. Landf. 2020, 45, 2107–2117. [Google Scholar] [CrossRef]
- Kirwan, M.L.; Gedan, K.B. Sea-level driven land conversion and the formation of ghost forests. Nat. Clim. Change 2019, 9, 450–457. [Google Scholar] [CrossRef]
- Dahl, T.E.; Stedman, S.M. Status and Trends of Wetlands in the Coastal Watersheds of the Conterminous United States 2004 to 2009; US Department of the Interior, Fish and Wildlife Service: Washington, DC, USA; National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 2013.
- Morris, J.T.; Edwards, J.; Crooks, S.; Reyes, E. Assessment of carbon sequestration potential in coastal wetlands. In Recarbonization of the Biosphere; Lal, R., Lorenz, K., Hüttl, R.F., Schneider, B.U., von Braun, J., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 517–531. [Google Scholar]
- Bromberg, K.D.; Bertness, M.D. Reconstructing New England salt marsh losses using historical maps. Estuaries 2005, 28, 823–832. [Google Scholar] [CrossRef]
- Wasson, K.; Woolfolk, A.; Fresquez, C. Ecotones as indicators of changing environmental conditions: Rapid migration of salt marsh-upland boundaries. Estuar. Coasts 2013, 36, 654–664. [Google Scholar] [CrossRef]
- Field, C.R.; Gjerdrum, C.; Elphick, C.S. Forest resistance to sea-level rise prevents landward migration of tidal marsh. Biol. Conserv. 2016, 201, 363–369. [Google Scholar] [CrossRef]
- Callaway, J.C.; Parker, V.T.; Vasey, M.C.; Schile, L.M. Emerging issues for the restoration of tidal marsh ecosystems in the context of predicted climate change. Madrono 2007, 54, 234–248. [Google Scholar] [CrossRef]
- Brophy, L.S.; Greene, C.M.; Hare, V.C.; Holycross, B.; Lanier, A.; Heady, W.N.; O’Connor, K.; Imaki, H.; Haddad, T.; Dana, R. Insights into estuary habitat loss in the western United States using a new method for mapping maximum extent of tidal wetlands. PLoS ONE 2019, 14, e0218558. [Google Scholar] [CrossRef] [PubMed]
- Thorne, K.; MacDonald, G.; Guntenspergen, G.; Ambrose, R.; Buffington, K.; Dugger, B.; Freeman, C.; Janousek, C.; Brown, L.; Rosencranz, J.; et al. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci. Adv. 2018, 4, eaao3270. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R.; Pérez-Maqueo, O.; Martinez, M.L.; Sutton, P.; Anderson, S.J.; Mulder, K. The value of coastal wetlands for hurricane protection. Ambio 2008, 27, 241–248. [Google Scholar] [CrossRef]
- Pezeshki, S.R.; DeLaune, R.D. Ecophenic variation in Spartina patens: Growth and biomass partitioning. J. Aquat. Plant Manag. 1991, 29, 99–102. [Google Scholar]
- Balaguru, K.; Judi, D.R.; Leung, L.R. Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity. Clim. Change 2016, 138, 99–100. [Google Scholar] [CrossRef]
- Rogers, K.; Saintilan, N.; Copeland, C. Managed retreat of saline coastal wetlands: Challenges and opportunities identified from the Hunter River Estuary, Australia. Estuar. Coasts 2014, 37, 67–78. [Google Scholar] [CrossRef]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.J.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Temmerman, S.; Kirwan, M.L. Building land with a rising sea. Science 2015, 349, 588–589. [Google Scholar] [CrossRef]
- CPRA. Louisiana’s Comprehensive Master Plan for a Sustainable Coast; Coastal Protection and Restoration Authority: Baton Rouge, LA, USA, 2012. [Google Scholar]
- Day, J.W., Jr.; Boesch, D.F.; Clairain, E.J.; Kemp, G.P.; Laska, S.B.; Mitsch, W.J.; Orth, K.; Mashriqui, H.; Reed, D.J.; Shabman, L.; et al. Restoration of the Mississippi Delta: Lessons from hurricanes Katrina and Rita. Science 2007, 315, 1679–1684. [Google Scholar] [CrossRef]
- Giosan, L.; Syvitski, J.; Constantinescu, S.; Day, J. Climate change: Protect the world’s deltas. Nature 2014, 516, 31–33. [Google Scholar] [CrossRef]
- Rozas, L.P.; Caldwell, P.; Minello, T.J. The fishery value of salt marsh restoration projects. J. Coast. Res. 2005, 40, 37–50. [Google Scholar]
Community Zone | Birding/Hunt Recreation | Carbon Sequestration | Storm Protection | Fisheries | Property | Total |
---|---|---|---|---|---|---|
Low marsh | n/a | $1204.8 | $11,748.9 | $6943.9 | $505.4 ($6506.4) | $20,403.0 ($26,403.7) |
High marsh | $4540.2 | $1140.4 | $1174.9 | n/a | $865.7 ($11,145.4) | $7721.0 ($18,000.9) |
Community Zone | Area Loss (km2) | Area Gain (km2) | Net Change (km2) | Ecosystem Loss (USD) | Ecosystem Gain (USD) | Ecosystem Net (USD) |
---|---|---|---|---|---|---|
Low marsh | 266.5 | 86.3 | −180.2 | 2.1 × 1012 (2.7 × 1012) | 6.7 × 1011 (8.6 × 1011) | −1.4 × 1012 (−1.8 × 1012) |
High marsh | 143.4 | 399.2 | 255.8 | 1.8 × 1010 (4.2 × 1010) | 5.0 × 1010 (1.2 × 1011) | 3.2 × 1010 (7.8 × 1010) |
Total | 409.9 | 485.5 | 75.6 | 2.1 × 1012 (2.7 × 1012) | 7.2 × 1011 (9.8 × 1011) | −1.4 × 1012 (−1.7 × 1012) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jung, N.W.; Doe, T.A.; Jung, Y.; Dellapenna, T.M. Massive Sea-Level-Driven Marsh Migration and Implications for Coastal Resilience along the Texas Coast. Remote Sens. 2024, 16, 2268. https://doi.org/10.3390/rs16132268
Jung NW, Doe TA, Jung Y, Dellapenna TM. Massive Sea-Level-Driven Marsh Migration and Implications for Coastal Resilience along the Texas Coast. Remote Sensing. 2024; 16(13):2268. https://doi.org/10.3390/rs16132268
Chicago/Turabian StyleJung, Nathalie W., Thomas A. Doe, Yoonho Jung, and Timothy M. Dellapenna. 2024. "Massive Sea-Level-Driven Marsh Migration and Implications for Coastal Resilience along the Texas Coast" Remote Sensing 16, no. 13: 2268. https://doi.org/10.3390/rs16132268
APA StyleJung, N. W., Doe, T. A., Jung, Y., & Dellapenna, T. M. (2024). Massive Sea-Level-Driven Marsh Migration and Implications for Coastal Resilience along the Texas Coast. Remote Sensing, 16(13), 2268. https://doi.org/10.3390/rs16132268