Highlighting the Use of UAV to Increase the Resilience of Native Hawaiian Coastal Cultural Heritage
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. UAV Surveys
3.2. Digital Elevation Models
3.2.1. UAV-SfM-Derived DEM
3.2.2. NOAA-LiDAR-Derived DEM
3.3. Accuracy Assessment
3.4. Local In Situ Water Sensors
3.5. Inundation Mapping
3.5.1. Observed Flooding of King Tides Using a UAV Orthomosaic
3.5.2. UAV and LiDAR DEM Modeled Flooding
4. Results
4.1. Variations in Local Water Levels across Coastal Cultural Heritage Sites
4.2. Observed Flooding
4.3. Modeled Inundation Using UAV and LiDAR DEMs
4.3.1. Comparing UAV-Modeled Flooding to Observed Flooding
4.3.2. Comparing LiDAR-Modeled Flooding to Observed Flooding
5. Discussion
5.1. Providing Fishpond Stewards with Updated Digital Elevation Models
5.2. UAVs Can Be Used to Rapidly Assess Real-Time Coastal Flooding at Cultural Heritage Sites
5.3. Implications of the Use of UAV-SfM Techniques to Map Shallow Water Environments
5.4. Implications for Sea Level Rise Vulnerability Assessments and the Use of Publicly Available Datasets
5.5. Limitations and Ways to Improve the Use of UAVs to Monitor Cultural Heritage Sites
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sweet, W.V.; Hamlington, B.D.; Kopp, R.E.; Weaver, C.P.; Barnard, P.L.; Bekaert, D.; Brooks, W.; Craghan, M.; Dusek, G.; Frederikse, T.; et al. Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines; NOAA Technical Report NOS 01; National Oceanic and Atmospheric Administration, National Ocean Service: Silver Spring, MD, USA, 2022; 111p, Available online: https://aambpublicoceanservice.blob.core.windows.net/oceanserviceprod/hazards/sealevelrise/noaa-nos-techrpt01-global-regional-SLR-scenarios-US.pdf (accessed on 5 September 2023).
- Hawai′i Climate Change Mitigation and Adaptation Commission. Hawai′i Sea Level Rise Vulnerability and Adaptation Report; State of Hawai′i; 2017. Available online: https://climateadaptation.hawaii.gov/wp-content/uploads/2017/12/SLR-Report_Dec2017.pdf (accessed on 28 December 2023).
- Laramee, L.; Romine, B.; Wirts, A.; Fletcher, C.; Habel, S.; Budge, J.; Lee, C.; Ho, A. Hawai′i Sea Level Rise Vulnerability and Adaptation Report; Hawai′i State Climate Commission: Honolulu, HI, USA, 2022. [Google Scholar]
- Bremer, L.L.; Coffman, M.; Summers, A.; Kelley, L.C.; Kinney, W. Managing for Diverse Coastal Uses and Values under Sea Level Rise: Perspectives from O′ahu, Hawai′i. Ocean. Coast. Manag. 2022, 225, 106151. [Google Scholar] [CrossRef]
- Kali′uokapa′akai Collective. The Kali′uokapa′akai Collective Report, Re-envisioning Wahi Kūpuna Stewardship in Hawai′i; Kali′uokapa′akai Collective: Honolulu, HI, USA, 2021. [Google Scholar]
- Keala, G.; Hollyer, J.R.; Castro, L. Loko I′a: A Manual on Hawaiian Fishpond Restoration and Management; College of Tropical Agriculture and Human Resources, University of Hawai′i: Honolulu, HI, USA, 2007; pp. 1–76. [Google Scholar]
- Kikuchi, W.K. Prehistoric Hawaiian Fishponds: Indigenous Aquaculture Influenced the Development of Social Stratification in Hawai′i. Science 1976, 193, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Costa-Pierce, B.A. Aquaculture in Ancient Hawai′i: Integrated Farming Systems Included Massive Freshwater and Seawater Fish Ponds. BioScience 1987, 37, 320–331. [Google Scholar] [CrossRef]
- Kame′eleihiwa, L. Native Land and Foreign Desires: Pehea Lā E Pono Ai? Bishop Museum Press: Honolulu, HI, USA, 1992. [Google Scholar]
- Möhlenkamp, P.; Beebe, C.K.; McManus, M.A.; Kawelo, A.H.; Kotubetey, K.; Lopez-Guzman, M.; Nelson, C.E.; Alegado, R. Kū Hou Kuapā: Cultural Restoration Improves Water Budget and Water Quality Dynamics in He′eia Fishpond. Sustainability 2019, 11, 161. [Google Scholar] [CrossRef]
- Millerd, S. Analyzing the Suitability of Mokauea Loko I′a Water Temperature and Salinity for Water Restoration via Oysters. 2020. Available online: https://nativesciencereport.org/2020/08/analyzing-the-suitability-of-mokauea-loko-i%CA%BBa-water-temperature-salinity-for-water-restoration-via-oysters/ (accessed on 12 January 2024).
- Innes-Gold, A.A.; Madin, E.M.; Stokes, K.; Ching, C.; Kawelo, H.I.; Kotubetey, K.I.; McManus, L.C. Restoration of an Indigenous Aquaculture System Can Increase Reef Fish Density and Fisheries Harvest in Hawai′i. Ecosphere 2024, 15, e4530. [Google Scholar] [CrossRef]
- Kua Hawai′i. The Hui Mālama Loko I′a. 2022. Available online: https://kuahawaii.org/huimalamalokoia/ (accessed on 16 January 2024).
- Apple, R.A.; Kikuchi, W.K. Ancient Hawai′i Shore Zone Fishponds: An Evaluation of Survivors for Historical Preservation. 1975. Available online: https://www.nps.gov/parkhistory/online_books/Hawaii/fishponds.pdf (accessed on 16 January 2024).
- Kikuchi, W.K. Hawaiian Aquaculture System. Ph.D. Dissertation, University of Arizona, Tucson, AZ, USA, 1973. [Google Scholar]
- Marrack, L. Modeling Potential Shifts in Hawaiian Anchialine Pool Habitat and Introduced Fish Distribution due to Sea Level Rise. Estuaries Coasts 2015, 39, 781–797. [Google Scholar] [CrossRef]
- Cooper, H.M.; Fletcher, C.H.; Chen, Q.; Barbee, M.M. Sea-level Rise Vulnerability Mapping for Adaptation Decisions Using LiDAR DEMs. Prog. Phys. Geogr. Earth Environ. 2013, 37, 745–766. [Google Scholar] [CrossRef]
- Cooper, H.M.; Chen, Q.; Fletcher, C.H.; Barbee, M.M. Assessing Vulnerability Due to Sea-Level Rise in Maui, Hawai‘i Using LiDAR Remote Sensing and GIS. Clim. Chang. 2013, 116, 547–563. [Google Scholar] [CrossRef]
- Cooper, H.M.; Chen, Q. Incorporating uncertainty of future sea-level rise estimates into vulnerability assessment: A case study in Kahului, Maui. Clim. Chang. 2013, 121, 635–647. [Google Scholar] [CrossRef]
- Kane, H.H.; Fletcher, C.H.; Frazer, L.N.; Barbee, M.M. Critical Elevation Levels for Flooding Due to Sea-Level Rise in Hawai‘i. Reg. Environ. Chang. 2015, 15, 1679–1687. [Google Scholar] [CrossRef]
- Hong, Y.; Kessler, J.; Titze, D.; Yang, Q.; Shen, X.; Anderson, E.J. Towards Efficient Coastal Flood Modeling: A Comparative Assessment of Bathtub, Extended Hydrodynamic, and Total Water Level Approaches. Ocean Dyn. 2024, 74, 391–405. [Google Scholar] [CrossRef]
- Habel, S.; Fletcher, C.H.; Rotzoll, K.; El-Kadi, A.I. Development of a Model to Simulate Groundwater Inundation Induced by Sea-Level Rise and High Tides in Honolulu, Hawaii. Water Res. 2017, 114, 122–134. [Google Scholar] [CrossRef]
- Yang, L.; Francis, O.P. Sea-level rise and vertical land motion on the Islands of Oahu and Hawaii, Hawaii. Adv. Space Res. 2019, 64, 2221–2232. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration (NOAA). Hilo, Hilo Bay, Kuhio Bay, HI—Station ID: 1617760. Available online: https://tidesandcurrents.noaa.gov/stationhome.html?id=1617760 (accessed on 8 May 2023).
- Scholl, M.A.; Ingebritsen, S.E.; Janik, C.J.; Kauahikaua, J.P. Use of Precipitation and Groundwater Isotopes to Interpret Regional Hydrology on a Tropical Volcanic Island: Kilauea Volcano Area, Hawaii. Water Resour. Res. 1996, 32, 3525–3537. [Google Scholar] [CrossRef]
- Brooke-Holland, L. Unmanned Aerial Vehicles (Drones): An Introduction; House of Commons Library: London, UK, 2012. [Google Scholar]
- Agisoft. Agisoft Metashape. Version 1.8.4. Available online: https://www.agisoft.com/ (accessed on 24 May 2023).
- Over, J.S.R.; Ritchie, A.C.; Kranenburg, C.J.; Brown, J.A.; Buscombe, D.D.; Nobel, T.; Sherwood, C.R.; Warrick, J.A.; Wernette, P.A. Processing Coastal Imagery with Agisoft Metashape Professional Edition, Version 1.6—Structure from Motion Workflow Documentation; US Geological Survey: Woods Hole, MA, USA, 2021. [Google Scholar]
- CloudCompare. CloudCompare. Version 2.12.4. Available online: https://www.cloudcompare.org/ (accessed on 10 September 2023).
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Office of Coastal Management (OCM). NOAA Coastal Inundation Digital Elevation Model: Honolulu Weather Forecast Office (HFO WFO)-Hawaii Island. 2024. Available online: https://www.fisheries.noaa.gov/inport/item/60150 (accessed on 20 December 2023).
- Gesch, D.; Palaseanu-Lovejoy, M.; Danielson, J.; Fletcher, C.; Kottermair, M.; Barbee, M.; Jalandoni, A. Inundation Exposure Assessment for Majuro Atoll, Republic of the Marshall Islands Using A High-Accuracy Digital Elevation Model. Remote Sens. 2020, 12, 154. [Google Scholar] [CrossRef]
- Solinst Levelogger 5 LTC. Model 3001 Data Sheet. Solinst Canada. 2023. Available online: https://www.solinst.com/products/data/3001-ltc.pdf (accessed on 1 August 2023).
- National Geodetic Survey. The NGS Data Sheet—1617760 Tidal 5. Available online: https://www.ngs.noaa.gov/cgi-bin/ds2.prl?retrieval_type=by_pid&PID=DO8011 (accessed on 29 November 2023).
- Esri. ArcGIS Pro Version 3.2.2. Available online: https://www.esri.com/ (accessed on 15 May 2022).
- Gesch, D.B. Best Practices for Elevation-Based Assessments of Sea-Level Rise and Coastal Flooding Exposure. Front. Earth Sci. 2018, 6, 230. [Google Scholar] [CrossRef]
- Bates, P.D.; De Roo, A.P.J. A Simple Raster-Based Model for Flood Inundation Simulation. J. Hydrol. 2000, 236, 54–77. [Google Scholar] [CrossRef]
- Anthony, K.L.E. Mālama Loko I′a: Salinity and Primary Productivity Relationships at Honokea Loko, Hale o Lono, and Waiāhole/Kapalaho on Hawaii Island, Hawai′i. Masters Thesis, University of Hawaii at Hilo, Hilo, HI, USA, 2018. [Google Scholar]
- Kauahi, C. Hydrology of Three Loko I′a, Hawaiian Fishponds, on Windward Hawai′i Island, Hawai′i. Masters Thesis, University of Hawaii at Hilo, Hilo, HI, USA, 2018. [Google Scholar]
- Guenther, G.C. Airborne lidar bathymetry. In Digital Elevation Model Technologies and Applications: The DEM Users Manual 2; ASPRS: Bethessda, MD, USA, 2007; pp. 253–320. [Google Scholar]
- Wedajo, G.K. LiDAR DEM Data for Flood Mapping and Assessment; Opportunities and Challenges: A Review. J. Remote Sens. GIS 2017, 6, 2015–2018. [Google Scholar] [CrossRef]
- Castellanos-Galindo, G.A.; Casella, E.; Mejía-Rentería, J.C.; Rovere, A. Habitat Mapping of Remote Coasts: Evaluating the Usefulness of Lightweight Unmanned Aerial Vehicles for Conservation and Monitoring. Biol. Conserv. 2019, 239, 108282. [Google Scholar] [CrossRef]
- Kandrot, S.; Hayes, S.; Holloway, P. Applications of Uncrewed Aerial Vehicles (UAV) Technology to Support Integrated Coastal Zone Management and the UN Sustainable Development Goals at the Coast. Estuaries Coasts 2021, 45, 1230–1249. [Google Scholar] [CrossRef] [PubMed]
- Pepe, M.; Alfio, V.S.; Costantino, D. UAV Platforms and the SfM-MVS Approach in the 3D Surveys and Modelling: A Review in the Cultural Heritage Field. Appl. Sci. 2022, 12, 12886. [Google Scholar] [CrossRef]
- Papakonstantinou, A.; Kavroudakis, D.; Kourtzellis, Y.; Chtenellis, M.; Kopsachilis, V.; Topouzelis, K.; Vaitis, M. Mapping Cultural Heritage in Coastal Areas with UAS: The Case Study of Lesvos Island. Heritage 2019, 2, 1404–1422. [Google Scholar] [CrossRef]
- Gil-Docampo, M.; Peña-Villasenín, S.; Bettencourt, A.M.; Ortiz-Sanz, J.; Peraleda-Vázquez, S. 3D Geometric Survey of Cultural Heritage by UAV in Inaccessible Coastal or Shallow Aquatic Environments. Archaeol. Prospect. 2023. Early View. [Google Scholar] [CrossRef]
- Lim, J.S.; Gleason, S.; Williams, M.; Linares Matás, G.J.; Marsden, D.; Jones, W. UAV-Based Remote Sensing for Managing Alaskan Native Heritage Landscapes in the Yukon-Kuskokwim Delta. Remote Sens. 2022, 14, 728. [Google Scholar] [CrossRef]
- Mattei, G.; Aucelli, P.P.; Ciaramella, A.; De Luca, L.; Greco, A.; Mellone, G.; Peluso, F.; Troisi, S.; Pappone, G. Multi-Method Technics and Deep Neural Networks Tools on Board ARGO USV for the Geoarchaeological and Geomorphological Mapping of Coastal Areas: The Case of Puteoli Roman Harbour. Sensors 2024, 24, 1090. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, K.; Hugenholtz, C.H.; Myshak, S.; Brown, O.; LeClair, A.; Tamminga, A.; Barchyn, T.E.; Moorman, B.; Eaton, B. Remote Sensing of the Environment with Small Unmanned Aircraft Systems (UASs), Part 1: A Review of Progress and Challenges. J. Unmanned Veh. Syst. 2014, 2, 69–85. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Drummond, C.D. UAVs for Coastal Surveying. Coastal Eng. 2016, 114, 19–24. [Google Scholar] [CrossRef]
- Murfitt, S.L.; Allan, B.M.; Bellgrove, A.; Rattray, A.; Young, M.A.; Ierodiaconou, D. Applications of Unmanned Aerial Vehicles in Intertidal Reef Monitoring. Sci. Rep. 2017, 7, 10259. [Google Scholar] [CrossRef]
- Rossiter, T.; Furey, T.; McCarthy, T.; Stengel, D.B. UAV-Mounted Hyperspectral Mapping of Intertidal Macroalgae. Estuar. Coast. Shelf Sci. 2020, 242, 106789. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-Cost UAV for High-Resolution and Large-Scale Coastal Dune Change Monitoring Using Photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments. Remote Sens. 2013, 5, 6880–6998. [Google Scholar] [CrossRef]
- Goncalves, J.A.; Henriques, R. UAV Photogrammetry for Topographic Monitoring of Coastal Areas. ISPRS J. Photogramm. Remote Sens. 2015, 104, 101–111. [Google Scholar] [CrossRef]
- Hashemi-Beni, L.; Jones, J.; Thompson, G.; Johnson, C.; Gebrehiwot, A. Challenges and Opportunities for UAV-Based Digital Elevation Model Generation for Flood-Risk Management: A Case of Princeville, North Carolina. Sensors 2018, 18, 3843. [Google Scholar] [CrossRef]
- Vaccher, V.; Hastewell, L.; Devoto, S.; Corradetti, A.; Mantovani, M.; Korbar, T.; Furlani, S. The application of UAV-derived SfM-MVS photogrammetry for the investigation of storm wave boulder deposits on a small rocky island in the semi-enclosed Northern Adriatic Sea. Geomat. Nat. Hazards Risk 2024, 15, 2295817. [Google Scholar] [CrossRef]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef]
- McKenzie, T.; Dulai, H.; Fuleky, P. Traditional and novel time-series approaches reveal submarine groundwater discharge dynamics under baseline and extreme event conditions. Sci. Rep. 2021, 11, 22570. [Google Scholar] [CrossRef] [PubMed]
- Wlodarczyk-Sielicka, M.; Stateczny, A. Comparison of Selected Reduction Methods of Bathymetric Data Obtained by Multibeam Echosounder. In Proceedings of the 2016 Baltic Geodetic Congress (BGC Geomatics), Gdansk, Poland, 2–4 June 2016; pp. 73–77. [Google Scholar] [CrossRef]
- Pratomo, D.G.; Khomsin; Putranto, B.F.E. Analysis of the green light penetration from Airborne LiDAR Bathymetry in Shallow Water Area. IOP Conf. Ser. Earth Environ. Sci. 2019, 389, 012003. [Google Scholar] [CrossRef]
- Gao, J. Bathymetric mapping by means of remote sensing: Methods, accuracy and limitations. Prog. Phys. Geogr. Earth Environ. 2009, 33, 103–116. [Google Scholar] [CrossRef]
- Agrafiotis, P.; Skarlatos, D.; Georgopoulos, A.; Karantzalos, K. Shallow water bathymetry mapping from UAV imagery based on machine learning. arXiv 2019, arXiv:1902.10733. [Google Scholar] [CrossRef]
- Lubczonek, J.; Kazimierski, W.; Zaniewicz, G.; Lacka, M. Methodology for Combining Data Acquired by Unmanned Surface and Aerial Vehicles to Create Digital Bathymetric Models in Shallow and Ultra-Shallow Waters. Remote Sens. 2022, 14, 105. [Google Scholar] [CrossRef]
- Specht, M.; Wiśniewska, M.; Stateczny, A.; Specht, C.; Szostak, B.; Lewicka, O.; Stateczny, M.; Widźgowski, S.; Halicki, A. Analysis of Methods for Determining Shallow Waterbody Depths Based on Images Taken by Unmanned Aerial Vehicles. Sensors 2022, 22, 1844. [Google Scholar] [CrossRef] [PubMed]
- Mandlburger, G.; Pfennigbauer, M.; Schwarz, R.; Flöry, S.; Nussbaumer, L. Concept and Performance Evaluation of a Novel UAV-Borne Topo-Bathymetric LiDAR Sensor. Remote Sens. 2020, 12, 986. [Google Scholar] [CrossRef]
- Hague, B.S.; Taylor, A.J. Tide-Only Inundation: A Metric to Quantify the Contribution of Tides to Coastal Inundation under Sea-Level Rise. Nat. Hazards 2021, 107, 675–695. [Google Scholar] [CrossRef]
- Mainka, S.A.; Howard, G.W. Climate Change and Invasive Species: Double Jeopardy. Integr. Zool. 2010, 5, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Marrack, L.; Wiggins, C.; Marra, J.J.; Genz, A.; Most, R.; Falinski, K.; Conklin, E. Assessing the Spatial–Temporal Response of Groundwater-Fed Anchialine Ecosystems to Sea-Level Rise for Coastal Zone Management. Aquatic Conserv. 2021, 31, 853–869. [Google Scholar] [CrossRef]
- Jacobi, J.D.; Warshauer, F.R. Potential Impacts of Sea Level Rise on Native Plant Communities and Associated Cultural Sites in Coastal Areas of the Main Hawaiian Islands; Pacific Islands Climate Change Cooperative: Hawai‘i National Park, HI, USA, 2017. [Google Scholar]
- Jessin, J.; Heinzlef, C.; Long, N.; Serre, D. A Systematic Review of UAVs for Island Coastal Environment and Risk Monitoring: Towards a Resilience Assessment. Drones 2023, 7, 206. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Moon, R.; Wilkinson, B. Estimating Ground Elevation in Coastal Dunes from High-Resolution UAV-LIDAR Point Clouds and Photogrammetry. Remote Sens. 2022, 15, 226. [Google Scholar] [CrossRef]
- Leijala, U.; Björkqvist, J.V.; Johansson, M.M.; Pellikka, H.; Laakso, L.; Kahma, K.K. Combining Probability Distributions of Sea Level Variations and Wave Run-Up to Evaluate Coastal Flooding Risks. Nat. Hazards Earth Syst. Sci. 2018, 18, 2785–2799. [Google Scholar] [CrossRef]
- Thorner, J.; Kumar, L.; Smith, S.D. Impacts of Climate-Change-Driven Sea Level Rise on Intertidal Rocky Reef Habitats Will Be Variable and Site Specific. PLoS ONE 2014, 9, e86130. [Google Scholar] [CrossRef]
DEM | Cell Size (m) | Measured Vertical Accuracy (RMSE in m) | Mean Error (m) |
---|---|---|---|
UAV (Transect 1) | 0.03 | 0.02 | 0.01 |
LiDAR (Transect 1) | 3.00 | 0.94 | −0.47 |
UAV (Transect 2) | 0.03 | 0.02 | 0.00 |
LiDAR (Transect 2) | 3.00 | 0.57 | −0.13 |
Site | Min (m) | Max (m) | Median (m) | Tidal Range (m) |
---|---|---|---|---|
Transect 1—2 August 2023 | ||||
Laehala | −0.21 | 0.87 | 0.28 | 1.08 |
Hale o Lono | −0.07 | 0.99 | 0.36 | 1.06 |
Waiāhole | −0.09 | 0.81 | 0.33 | 0.90 |
* NOAA Predicted (Hilo, HI) | −0.49 | 0.63 | 0.02 | 1.12 |
** NOAA Verified (Hilo, HI) | −0.34 | 0.75 | 0.13 | 1.09 |
Transect 2—3 July 2023 | ||||
Honokea | −0.40 | 0.46 | −0.06 | 0.86 |
Kaumaui Makai | −0.53 | 0.69 | −0.06 | 1.22 |
Kaumaui Mauka | −0.45 | 0.75 | 0.07 | 1.20 |
* NOAA Predicted (Hilo, HI) | −0.53 | 0.64 | −0.04 | 1.17 |
** NOAA Verified (Hilo, HI) | −0.39 | 0.70 | 0.07 | 1.09 |
Site | Area (m2) UAV Observed Flooded | Area (m2) Flooded in UAV Model | % Area Underestimated by UAV Model | % Area Overestimated by UAV Model | % Area of Agreement between UAV Observed and UAV Model |
---|---|---|---|---|---|
Transect 1 | |||||
Laehala | 7969 | 7729 | 10.85% | 7.84% | 89.15% |
Hale o Lono | 7536 | 7541 | 6.09% | 6.16% | 93.91% |
Waiāhole | 12,628 | 12,420 | 1.65% | 0.00% | 98.35% |
Transect 2 | |||||
Honokea | 2103 | 2377 | 3.71% | 12.93% | 100% |
Kaumaui | 3414 | 3486 | 9.29% | 11.75% | 90.25% |
Site | Area (m2) UAV Observed Flooded | Area (m2) Flooded in LiDAR Model | % Area Underestimated by LiDAR Model | % Area Overestimated by LiDAR Model | % Area of Agreement between the UAV Observed and LiDAR Model |
---|---|---|---|---|---|
Transect 1 | |||||
Laehala | 7969 | 17,984 | 0.00% | 125.67% | 100.00% |
Hale o Lono | 7536 | 39,093 | 0.00% | 158.64% | 99.95% |
Waiāhole | 12,628 | 36,493 | 0.30% | 188.98% | 99.70% |
Transect 2 | |||||
Honokea | 2103 | 4358 | 0.00% | 101.81% | 100.00% |
Kaumaui | 3414 | 5461 | 19.80% | 81.90% | 78.09% |
JALBTCX-LiDAR Collection and Products | UAV + RTK-GPS Collection and Products | |
---|---|---|
Operational Costs | ~USD 20,000 * | ~USD 9200 |
Collection period | January–Feburary, 2007 | 3 July and 2 August 2023 |
Flight time (mins) | 80–90 min | 30–40 min |
Spatial resolution (m) | 3.00 m | 0.03 m |
Horizontal Accuracy (m) | 0.75 m | 0.01 m |
Vertical Accuracy (m) | 0.20 m | 0.03 m |
Spatial coverage | Northern coast of Hawai′i Island | Two shoreline transects along the Keaukaha, Hilo coastline |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Steward, K.K.; Ninomoto, B.K.; Kane, H.H.; Burns, J.H.R.; Mead, L.; Anthony, K.; Mossman, L.; Olayon, T.; Glendon-Baclig, C.K.; Kauahi, C. Highlighting the Use of UAV to Increase the Resilience of Native Hawaiian Coastal Cultural Heritage. Remote Sens. 2024, 16, 2239. https://doi.org/10.3390/rs16122239
Steward KK, Ninomoto BK, Kane HH, Burns JHR, Mead L, Anthony K, Mossman L, Olayon T, Glendon-Baclig CK, Kauahi C. Highlighting the Use of UAV to Increase the Resilience of Native Hawaiian Coastal Cultural Heritage. Remote Sensing. 2024; 16(12):2239. https://doi.org/10.3390/rs16122239
Chicago/Turabian StyleSteward, Kainalu K., Brianna K. Ninomoto, Haunani H. Kane, John H. R. Burns, Luke Mead, Kamala Anthony, Luka Mossman, Trisha Olayon, Cybil K. Glendon-Baclig, and Cherie Kauahi. 2024. "Highlighting the Use of UAV to Increase the Resilience of Native Hawaiian Coastal Cultural Heritage" Remote Sensing 16, no. 12: 2239. https://doi.org/10.3390/rs16122239
APA StyleSteward, K. K., Ninomoto, B. K., Kane, H. H., Burns, J. H. R., Mead, L., Anthony, K., Mossman, L., Olayon, T., Glendon-Baclig, C. K., & Kauahi, C. (2024). Highlighting the Use of UAV to Increase the Resilience of Native Hawaiian Coastal Cultural Heritage. Remote Sensing, 16(12), 2239. https://doi.org/10.3390/rs16122239