Remote Sensing and Environmental Monitoring Analysis of Pigment Migrations in Cave of Altamira’s Prehistoric Paintings
Abstract
:1. Introduction
- Obtaining a higher-resolution response in the first centimeters of depth from the surface of the Ceiling, where the mentioned red claviform sign is located. This has been complemented with earlier 2D records obtained with the central antenna of 900 MHz frequency.
- Mapping the spatial configuration of moisture flows present in the study area directly involved in the Polychrome Layer. For this purpose, preferential moisture pathways have been mapped, as well as monitoring of the surface water dynamics, and the main dripping points associated with the migration and detachment processes of pigment.
2. Materials and Methods
2.1. Study Site
2.2. General Workflow Diagram
2.3. Remote Sensing Methods
2.3.1. Photogrammetry of the Polychrome Ceiling
2.3.2. GPR of ALT1 Control Area
- The effect of attenuation on the amplitude is a derivative of the attenuation coefficient. The amplitude of the wave propagating through the materials/media decreases drastically as a function of the degree of moisture. Consequently, the wave is attenuated and the wave incident on the targets within the medium generates a low-amplitude anomaly in the radar records, and in some cases, the anomalies may not even be visible [22,64,65,66,67,68].
- An additional effect on the amplitude is a function of the reflection coefficient. In the case of surface moisture in areas under dry material/medium, the contrast in dielectric permittivity between the wet and dry media is greater the higher the water content is, increasing the reflection coefficient. This means that the greater the contrast between the electromagnetic parameters of two materials/media that are in contact, the greater the percentage of incident energy that will be reflected at the boundary/discontinuity of the reflector. The strength (amplitude) of the reflected fields is proportional to the magnitude of the dielectric constant. Radar reflections of higher amplitude will occur mainly at interfaces within the same geological layer and at material/media interfaces that have significantly different electromagnetic properties. Thus, the anomaly due to the existence of moist areas has a higher amplitude in the reflection profile, as has been reported by different authors [20,37,60,68,69,70,71,72,73,74].
2.3.3. GPR Data Acquisition
2.3.4. GPR Data Processing
2.4. Polychrome Ceiling Hydrology
3. Results
3.1. Moisture Mapping in ALT1
- Moisture Zone 1 is strongly associated with the geometry of the central fracture mapped in the 2017/2018 campaigns. This moisture accumulation is parallel to the central fracture and reaches a depth of 36 cm (Figure 9a). Moisture Zone 1 results from the moisture concentration in areas adjacent to the central fracture due to the dam effect generated by the injection of cement mortar applied over the entire development of this large fracture crossing the Ceiling from west to east (Figure 2a). The antenna information shows the existence of discontinuities in the mortar, indicating partial degradation, disintegration, or deterioration at certain points. Additionally, the antenna indicates that the depth of this injected filling from the early last century presents a variable thickness.
- Moisture Zone 2 is closely associated with drip points ALT1_1, ALT1_2, and ALT1_4 as shown in Figure 7b, between 3 cm and 5 cm deep. Its highest moisture concentration is at a depth of 3 cm.
- Moisture Zone 3 is between 2 cm and 12 cm deep. Its highest moisture concentration is at a depth of 2 cm.
- Moisture Zone 4 is associated with the vertical fractures mapped in the 2017/2018 campaigns and projected into the belly of the large bison associated with our ALT1 control zone. It ranges from 2 cm to 36 cm deep.
- Moisture Zone 5 is between 6 cm and 12 cm deep. Its highest moisture concentration is at a depth of 7 cm.
- Moisture Zone 6 is between 6 cm and 19 cm deep. Its highest moisture concentration is at a depth of 6–7 cm (Figure 9a).
3.2. Hydrology of the Polychrome Ceiling
3.3. The Central Fracture
3.4. Limitations and Challenges
4. Discussion
4.1. Interpretation of Results in Light of Previous Studies
4.2. Implications for Conservation Strategies
4.3. Broad Context and Future Research Directions
- Further studying moisture dynamics and its correlation with seasonal variations to refine conservation strategies.
- Continuous monitoring of structural stability to assess long-term changes and the effectiveness of possible conservation interventions.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ministerio de Cultura y Deporte; Universidad de Cantabria; CSIC, Universidad del País Vasco; de Guichen, G. Programa de Investigación Para la Conservación Preventiva y Régimen de Acceso de la Cueva de Altamira (2012–2014); Ministerio de Cultura y Deporte: Madrid, Spain, 2014; Volume II. [Google Scholar]
- Cuezva, S. Dinámica Microambiental de un Medio Kárstico Somero (Cueva de Altamira, Cantabria): Microclima, Geomicrobiología y Mecanismos de Interacción Cavidad-Exterior. Ph.D. Thesis, Universidad Complutense de Madrid, Madrid, Spain, 2008; p. 320. [Google Scholar]
- Villar, E.; Fernández, P.L.; Gutiérrez, I.; Quindós, L.S.; Soto, J. Influence of visitors on carbon dioxide concentrations in Altamira Cave. Cave Sci. 1986, 13, 21–24. [Google Scholar]
- Sánchez-Moral, S.; Cuezva, S.; García-Antón, E.; Fernández-Cortes, A.; Elez, J.; Benavente, D.; Cañaveras, J.C.; Jurado, V.; Rogerio-Candelera, M.A.; Saiz-Jiménez, Y.C. Microclimatic monitoring in Altamira cave: Two decades of scientific projects for its conservation. In The Conservation of Subterranean Cultural Heritage; Saiz-Jiménez, C., Ed.; CRC Press: London, UK, 2014; pp. 139–144. [Google Scholar]
- Hoyos, M.; Soler, V.; Cañaveras, J.C.; Sánchez-Moral, S.; Sanz-Rubio, E. Microclimatic characterization of a karstic cave: Human impact on microenvironmental parameters of a prehistoric rock art cave (Candamo Cave, northern Spain). Environ. Geol. 1998, 33, 231–242. [Google Scholar] [CrossRef]
- Ontañon, R.; Bayarri, V.; Herrera, J.; Gutierrez, R. The conservation of prehistoric caves in Cantabria, Spain. In The Conservation of Subterranean Cultural Heritage; CRC Press/Balkema: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2014; ISBN 978-1-315-73997-7. [Google Scholar]
- Sánchez-Moral, S.; Cuezva, S.; Fernández Cortés, Á.; Janices, I.; Benavente, D.; Cañaveras, J.C.; González Grau, J.M.; Jurado, V.; Laiz Trobajo, L.; Portillo Guisado, M.D.; et al. Estudio Integral del Estado de Conservación de la Cueva de Altamira y su Arte Paleolítico (2007–2009). Perspectivas Futuras de Conservación; Monografías del Museo Nacional y Centro de Investigación de Altamira, No. 24; Ministerio de Educación, Cultura y Deporte: Madrid, Spain, 2014. [Google Scholar]
- Villar, E. Propagación de la onda térmica anual a través de discontinuidades de aire subterráneas. An. Física Ser. B 1986, 82, 132–142. [Google Scholar]
- Hoyos, M.; Bustillo, A.; García, A.; Martín, C.; Ortiz, R.; Y Suazo, C. Características Geológico-Kársticas de la Cueva de Altamira (Santillana del Mar, Santander); Informe Ministerio de Cultura: Madrid, Spain, 1981; 81p. [Google Scholar]
- Sánchez, M.A.; Foyo, A.; Tomillo, C.; Iriarte, E. Geological risk assessment of the Altamira Cave: A proposed Natural Risk Index and Safety Factor for the protection of prehistoriccaves. Eng. Geol. 2007, 94, 180–200. [Google Scholar] [CrossRef]
- Foyo, A.; Tomillo, C.; Sánchez, M.A.; Suarez, J.L. Esquema Geológico del Entorno de la Cueva de Altamira; Las-Heras, J.A., Ed.; Redescubrir Altamira, Turner: Madrid, Spain, 2002; pp. 273–286. [Google Scholar]
- Hoyos, M. Procesos de alteración de soporte y pintura en diferentes cuevas con arte rupestre del norte de España: Santimamiñe, Arenaza, Altamira y Llonín. In La Protección y Conservación del Arte Rupestre Paleolítico; Principado de Asturias: Oviedo, Spain, 1993; pp. 51–74. [Google Scholar]
- García-García, F.; Valls-Ayuso, A.; Benlloch-Marco, J.; Valcuende-Payá, M. An optimization of the work disruption by 3D cavity mapping using GPR: A new sewerage project in Torrente (Valencia, Spain). Constr. Build. Mater. 2017, 154, 1226–1233. [Google Scholar] [CrossRef]
- Lwaheidi, M.; Batayneh, A.; Ghrefat, H.; Zumlot, T. The use of ground penetrating radar for mapping rock stratigraphy and tectonics: Implications for geotechnical engineering. J. Earth Sci. 2014, 25, 895–900. [Google Scholar] [CrossRef]
- Endres, A.; Clement, W.; Rudolph, D. Ground Penetrating Radar Imaging of an Aquifer During a Pumping Test. Ground Water 2000, 38, 566–576. [Google Scholar] [CrossRef]
- Porsani, J.L.; Sauck, W.A.; Júnior, A.O.S. GPR for mapping fractures and as a guide for the extraction of ornamental granite from a quarry: A case study from southern Brazil. J. Appl. Geophys. 2006, 58, 177–187. [Google Scholar] [CrossRef]
- Van den Bril, K.; Grégoire, C.; Swennen, R.; Lambot, S. Ground-penetrating radar as a tool to detect rock hetero-geneities (channels, cemented layers and fractures) in the Luxembourg Sandstone Formation (Grand-Duchy of Luxem-bourg). Sedimentology 2007, 54, 949–967. [Google Scholar] [CrossRef]
- Reiss, S.; Reicherter, K.; Reuther, C.D. Visualization and characterization of active normal faults and associated sediments by high-resolution GPR. Geol. Soc. Lond. Spec. Publ. 2003, 211, 247–255. [Google Scholar] [CrossRef]
- Abbasi Baghbadorani, A.; Hole, J.; Baggett, J.; Ripepi, N. Radar Imaging of Fractures and Voids behind the Walls of an Underground Mine. Geophysics 2021, 86, 1–65. [Google Scholar] [CrossRef]
- Pipan, M.; Forte, E.; Guangyou, F.; Finetti, I. High resolution GPR imaging and joint characterization in limestone. Near Surf. Geophys. 2003, 1, 39–55. [Google Scholar] [CrossRef]
- De Oliveira, J.G., Jr.; de Medeiros, W.E.; de Santana, F.L.; Bezerra, F.H.R.; Cazarin, C.L. Enhancing stratigraphic, structural and dissolution features in GPR images of carbonate karst through data processing. Near Surf. Geophys. 2020, 18, 135–148. [Google Scholar] [CrossRef]
- Pueyo-Anchuela, O.; Pocoví Juan, A.; Soriano, M.A.; Casas-Sainz, A.M. Characterization of karst hazards from the per-spective of the doline triangle using GPR—Examples from Central Ebro Basin (Spain). Eng. Geol. 2009, 108, 225–236. [Google Scholar] [CrossRef]
- Mansour, K.; ABD El Zaher, M.; Hafiz, M.; Ebrahim, S.; Gomaa, M.; Salem, M. Detection for severe caves and sinkholes in non-clastic rock type using GPR technique. NRIAG J. Astron. Geophys. 2023, 12, 121–131. [Google Scholar] [CrossRef]
- Chalikakis, K.; Plagnes, V.; Guerin, R.; Valois, R.; Bosch, F.P. Contribution of geophysical methods to karst-system exploration: An overview. Hydrogeol. J. 2011, 19, 1169–1180. [Google Scholar] [CrossRef]
- Reis, J.A.; Castro, D.L.; Jesus, T.E.; Filho, F.P. Characterization of collapsed paleocave systems using GPR attributes. J. Appl. Geophys. 2014, 103, 43–56. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, S.; Peng, T.; Peng, H.; Oliver, D.M. Evaluating the structure characteristics of epikarst at a typical peak cluster depression in Guizhou plateau area using ground penetrating radar attributes. Geomorphology 2020, 364, 107015. [Google Scholar] [CrossRef]
- Franseen, E.K.; Byrnes, A.P.; Xia, J.; Miller, R.D. Improving resolution and understanding controls on GPR response in carbonate strata: Implications for attribute analysis. Lead. Edge 2007, 26, 984–993. [Google Scholar] [CrossRef]
- Zhao, W.; Forte, E.; Pipan, M.; Tian, G. Ground penetrating radar (GPR) attribute analysis for archaeological prospection. J. Appl. Geophys. 2013, 97, 107–117. [Google Scholar] [CrossRef]
- Schmalz, B.; Lennartz, B.; Wachsmuth, D. Analyses of soil water content variations and GPR attribute distributions. J. Hydrol. 2002, 267, 217–226. [Google Scholar] [CrossRef]
- Persico, R.; Colica, E.; Zappatore, T.; Giardino, C.; D’Amico, S. Ground-Penetrating Radar and Photogrammetric Investigation on Prehistoric Tumuli at Parabita (Lecce, Italy) Performed with an Unconventional Use of the Position Markers. Remote Sens. 2022, 14, 1280. [Google Scholar] [CrossRef]
- Caldeira, B.; Oliveira, R.J.; Teixidó, T.; Borges, J.F.; Henriques, R.; Carneiro, A.; Peña, J.A. Studying the Construction of Floor Mosaics in the Roman Villa of Pisões (Portugal) Using Noninvasive Methods: High-Resolution 3D GPR and Photogrammetry. Remote Sens. 2019, 11, 1882. [Google Scholar] [CrossRef]
- Ercoli, M.; Brigante, R.; Radicioni, F.; Pauselli, C.; Mazzocca, M.; Centi, G.; Stoppini, A. Inside the polygonal walls of Amelia (Central Italy): A multidisciplinary data integration, encompassing geodetic monitoring and geophysical prospections. J. Appl. Geophys. 2016, 127, 31–44. [Google Scholar] [CrossRef]
- Cozzolino, M.; Di Meo, A.; Gentile, V. The contribution of indirect topographic surveys (photogrammetry and laser scanner) and GPR investigations in the study of the vulnerability of the Abbey of Santa Maria a Mare, Tremiti Islands (Italy). Ann. Geophys. 2019, 62, SE343. [Google Scholar] [CrossRef]
- Bayarri, V.; Prada, A.; García, F.; Díaz-González, L.M.; De Las Heras, C.; Castillo, E.; Fatás, P. Integration of Remote-Sensing Techniques for the Preventive Conservation of Paleolithic Cave Art in the Karst of the Cave of Altamira. Remote Sens. 2023, 15, 1087. [Google Scholar] [CrossRef]
- Bayarri, V.; Prada, A.; García, F. A Multimodal Research Approach to Assessing the Karst Structural Conditions of the Ceiling of a Cave with Palaeolithic Cave Art Paintings: Polychrome Hall at Cave of Altamira (Spain). Sensors 2023, 23, 9153. [Google Scholar] [CrossRef] [PubMed]
- Bayarri, V.; Prada, A.; García, F.; De Las Heras, C.; Fatás, P. A Multisensory Analysis of the Moisture Course of the Cave of Altamira (Spain): Implications for Its Conservation. Remote Sens. 2024, 16, 197. [Google Scholar] [CrossRef]
- Galone, L.; Colica, E.; D’Amico, S.; Cardona, D.; Portelli, P.; Fontanelli, F.; Borg, J.J. Integrated geophysical and geomatic studies at Ghar Dalam Cave, Malta’s oldest prehistoric site. In Proceedings of the International Conference on Metrology for Archaeology and Cultural Heritage (MetroArchaeo 2021), Milan, Italy, 20–22 October 2021. [Google Scholar] [CrossRef]
- Romano, G.; Capozzoli, L.; Abate, N.; De Girolamo, M.; Liso, I.S.; Patella, D.; Parise, M. An Integrated Geophysical and Unmanned Aerial Systems Surveys for Multi-Sensory, Multi-Scale and Multi-Resolution Cave Detection: The Gravaglione Site (Canale di Pirro Polje, Apulia). Remote Sens. 2023, 15, 3820. [Google Scholar] [CrossRef]
- Jia, L.; Meng, Y.; Li, L.; Yin, R. A multidisciplinary approach in cover-collapse sinkhole analyses in the mantle karst from Guangzhou City (SE China). Nat. Hazards 2021, 108, 1389–1410. [Google Scholar] [CrossRef]
- Lasheras, J.A.; Heras, C.D.L.; Prada, A.; Fatás, P.; Martínez, A.; González, M.D.L.C.Y.; Dohijo, E. La conservación de Altamira como parte de su gestión. In Proceedings of the XIX International Rock Art Conference IFRAO 2015: Symbols in the Landscape: Rock Art and Its Context, Cáceres, Spain, 31 August–4 September 2015; Collado, H., García, J.J., Eds.; Arkeos: Tomar, Portugal, 2015; pp. 2395–2414. [Google Scholar]
- Ministerio de Cultura y Deporte; Universidad de Cantabria; CSIC, Universidad del País Vasco; de Guichen, G. Programa de Investigación Para la Conservación Preventiva y Régimen de Acceso de la Cueva de Altamira (2012–2014); Ministerio de Cultura y Deporte: Madrid, Spain, 2014; Volume IV. [Google Scholar]
- Bayarri, V.; Sebastián, M.A.; Ripoll, S. Hyperspectral Imaging Techniques for the Study, Conservation and Management of Rock Art. Appl. Sci. 2019, 9, 5011. [Google Scholar] [CrossRef]
- Bayarri, V.; Castillo, E.; Ripoll, S.; Sebastián, M.A. Improved Application of Hyperspectral Analysis to Rock Art Panels from El Castillo Cave (Spain). Appl. Sci. 2021, 11, 1292. [Google Scholar] [CrossRef]
- Teira, L.; Bayarri, V.; Ontañón, R.; Castillo, E.; Arias, P. Geometric and radiometric recording of prehistoric graphic expression: The case of Peña Tu (Asturias, Spain). Archaeol. Anthr. Sci. 2024, 16, 32. [Google Scholar] [CrossRef]
- Lasheras, J.A.; Heras, C.D.L.; Prada, A.Y.; Dohijo, E. Altamira y su futuro. In Proceedings of the Actas Jornadas Técnicas La Conservación del Arte Rupestre: Sostenibilidad e Integración en el Paisaje, Salamanca, Spain, 15–17 October 2013; Consejería de Cultura y Turismo de la Junta de Castilla y León: Valladolid, Spain, 2015; pp. 85–102. [Google Scholar]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying, 4th ed.; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Teunissen, P.; Khodabandeh, A. Review and principles of PPP-RTK methods. J. Geod. 2015, 89, 217–240. [Google Scholar] [CrossRef]
- TOPCON. Topcon Hyper II GNSS Receiver Specifications. Available online: https://topconcare.com/en/hardware/gnss-receivers/hiper-ii/specifications/ (accessed on 16 October 2023).
- TOPCON. Topcon Tools 8. Technical Datasheet. Available online: https://topconcare.com/en/software/office-applications/topcon-tools-8/ (accessed on 16 October 2023).
- Bayarri, V.; Castillo, E.; Ripoll, S.; Sebastián, M.A. Control of Laser Scanner Trilateration Networks for Accurate Georeferencing of Caves: Application to El Castillo Cave (Spain). Sustainability 2021, 13, 13526. [Google Scholar] [CrossRef]
- TOPCON. Topcon GPT. Available online: https://topconcare.com/en/hardware/optical/gpt-series-total-stations/ (accessed on 7 May 2024).
- FARO. FARO Laser Scanner Focus 3D X 130 Technical Datasheet. Available online: https://downloads.faro.com/index.php/s/XYSMR89BwyD5fqg?dir=undefined&openfile=41913 (accessed on 8 February 2023).
- Bayarri-Cayón, V.; Castillo, E. Caracterización geométrica de elementos complejos mediante la integración de diferentes técnicas geomáticas. Resultados obtenidos en diferentes cuevas de la Cornisa Cantábrica. In Proceedings of the VIII Semana Geomática Internacional, Barcelona, Spain, 3–5 March 2009. [Google Scholar]
- Bayarri, V.; Latova, J.; Castillo, E.; Lasheras, J.A.; De Las Heras, C.; Prada, A. Nueva documentación y estudio del arte empleando técnicas hiperespectrales en la Cueva de Altamira. In ARKEOS|Perspectivas em Diálogo, nº 37, Proceedings of XIX International Rock Art Conference IFRAO 2015: Symbols in the Landscape: Rock Art and its Context, Cáceres, Spain, 31 August–4 September 2015; Conference Proceedings; Instituto Terra e Memória: Tomar, Portugal, 2015; ISBN 978-84-9852-463-5. [Google Scholar]
- Bayarri-Cayón, V.; Latova, J.; Castillo, E.; Lasheras, J.A.; De Las Heras, C.; Prada, A. Nueva ortoimagen verdadera del Techo de Polícromos de la Cueva de Altamira. In ARKEOS|Perspectivas em Diálogo, nº 37, Proceedings of the XIX International Rock Art Conference IFRAO 2015: Symbols in the Landscape: Rock Art and its Context, Cáceres, Spain, 31 August–4 September 2015; Conference Proceedings; Instituto Terra e Memória: Tomar, Portugal, 2015; pp. 2308–2320. ISBN 978-84-9852-463-5. [Google Scholar]
- Pérez-Gracia, V.; García García, F.; Rodriguez Abad, I. GPR evaluation of the damage found in the reinforced concrete base of a block of flats: A case study. NDT E Int. 2008, 41, 341–353. [Google Scholar] [CrossRef]
- Schmalholz, J.; Stoffregen, H.; Kemna, A.; Yaramanci, U. Imaging of water content distributions inside a lysimeter using GPR tomography. Vadose Zone J. 2004, 3, 1106–1115. [Google Scholar] [CrossRef]
- Pérez Gracia, V.; Di Capua, D.; González-Drigo, R.; Pujades, L. Laboratory characterization of a GPR antenna for high-resolution testing: Radiation pattern and vertical resolution. NDT E Int. 2009, 42, 336–344. [Google Scholar] [CrossRef]
- Conyers, L.B. Ground-Penetrating Radar for Archaeology, 4th ed.; Rowman and Littlefield Publishers, Alta Mira Press: Lanham, MD, USA, 2023; p. 264. [Google Scholar]
- Jol, H.M. Ground Penetrating Radar Theory and Applications, 1st ed.; Elsevier Science: Amsterdam, The Nethrlands, 2009; p. 544. [Google Scholar]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics, 2nd ed.; Wiley-Blackwell, John Wiley & Sons Ltd.: Oxford, UK, 2011; p. 710. [Google Scholar]
- Neal, A. Ground-Penetrating Radar and Its Use in Sedimentology: Principles, Problems and Progress. Earth-Sci. Rev. 2004, 66, 261–330. [Google Scholar] [CrossRef]
- Martínez-Garrido, M.I.; Fort, R.; Gómez-Heras, M.; Valles-Iriso, J.; Varas-Muriel, M.J. A comprehensive study for moisture control in cultural heritage using non-destructive techniques. J. Appl. Geophys. 2018, 155, 36–52. [Google Scholar] [CrossRef]
- Theune, U.; Rokosh, D.; Sacchi, M.D.; Schmitt, D.R. Mapping fractures with GPR: A case study from Turtle Mountain. Geophysics 2006, 71, B139–B150. [Google Scholar] [CrossRef]
- Leucci, G.; Masini, N.; Persico, R. Time–frequency analysis of GPR data to investigate the damage of monumental buildings. J. Geophys. Eng. 2012, 9, S81. [Google Scholar] [CrossRef]
- Kaplanvural, I.; Ozkap, K.; Peksen, E. Influence of water content investigation on GPR wave attenuation for early age concrete in natural air-drying condition. Constr. Build. Mater. 2021, 297, 123783. [Google Scholar] [CrossRef]
- Uriarte, J.A.; Damas Molla, L.; Sagarna, M.; Aranburu, A.; García, F.; Antiguedad, I.; Morales, T. Characterization of complex groundwater flows in the environment of singular buildings by combining hydrogeological and non-destructive geophysical (ground-penetrating radar) techniques: Punta Begona Galleries (Getxo, Spain). Hydrol. Process. 2020, 34, 1004–1015. [Google Scholar] [CrossRef]
- Conyers, L.B. Interpreting Ground-penetrating Radar for Archaeology, 1st ed.; Left Coast Press Inc.: Walnut Creek, CA, USA, 2012; p. 220. [Google Scholar]
- Lunt, I.A.; Hubbard, S.S.; Rubin, Y. Soil moisture content estimation using ground-penetrating radar reflection data. J. Hydrol. 2005, 307, 254–269. [Google Scholar] [CrossRef]
- Solla, M.; Lagüela, S.; Fernández, N.; Garrido, I. Assessing Rebar Corrosion through the Combination of Nondestructive GPR and IRT Methodologies. Remote Sens. 2019, 11, 1705. [Google Scholar] [CrossRef]
- Perez-Gracia, V.; Solla, M.; Fontul, S. Analysis of the GPR signal for moisture detection: Application to heritage buildings. Int. J. Archit. Herit. 2024, 18, 230–253. [Google Scholar] [CrossRef]
- Evans, R. Sustainable assessment of structures and materials using ground penetrating radar (GPR). In Contemporary Trends in the Regenerative and Sustainable Built Environment: Technical and Managerial Aspects; Nottingham Trent University: Nottingham, UK, 2015; pp. 77–87. [Google Scholar]
- Garrido, I.; Solla, M.; Lagüela, S.; Fernández, N. IRT and GPR Techniques for Moisture Detection and Characterisation in Buildings. Sensors 2020, 20, 6421. [Google Scholar] [CrossRef] [PubMed]
- Longoni, L.; Arosio, D.; Scaioni, M.; Papini, M.; Zanzi, L.; Roncella, R.; Brambilla, D. Surface and subsurface non-invasive investigations to improve the characterization of a fractured rock mass. J. Geophys. Eng. 2012, 9, 461–472. [Google Scholar] [CrossRef]
- Fechner, T.; Yaramanci, U. Influence of complex dielectric properties on the characteristics of radar reflections. Eur. J. Environ. Eng. Geophys. 1996, 1, 287–301. [Google Scholar]
- Zajícová, K.; Chuman, T. Application of ground penetrating radar methods in soil studies: A review. Geoderma 2019, 343, 116–129. [Google Scholar] [CrossRef]
- Huisman, J.A.; Hubbard, S.S.; Redman, J.D.; Annan, A.P. Measuring soil water content with ground penetrating radar: A review. Vadose Zone J. 2003, 2, 476–491. [Google Scholar] [CrossRef]
- Koyama, C.N.; Liu, H.; Takahashi, K.; Shimada, M.; Watanabe, M.; Khuut, T.; Sato, M. In-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR. Remote Sens. 2017, 9, 580. [Google Scholar] [CrossRef]
- Millard, S.G.; Shaari, A.J.H.; Bungey, J.H. Field pattern characteristics of GPR antennas. NDT E Int. 2002, 35, 473–482. [Google Scholar] [CrossRef]
- Oikonomopoulou, E.C.; Palieraki, V.A.; Sfikas, I.P.; Trezos, C.G. Reliability and limitations of GPR for identifying objects embedded in concrete–Experience from the lab. Case Stud. Constr. Mater. 2022, 16, e00898. [Google Scholar] [CrossRef]
- Bi, V.; Zhao, Y.; Shen, R.; Li, B.; Hu, S.; Ge, S. Multi-frequency GPR data fusion and its application in NDT. NDT E Int. 2020, 115, 102289. [Google Scholar] [CrossRef]
- Apel, D.B.; Dezelic, V. Evaluation of high frequency ground penetrating radar (GPR) in mapping strata of dolomite and limestone rocks for ripping technique. Int. J. Surf. Min. Reclam. Environ. 2005, 19, 260–275. [Google Scholar] [CrossRef]
- Tosti, F.; Bianchini, L.C.; Calvi, A.; Alani, A.M.; Benedetto, A. An investigation into the railway ballast dielectric properties using different GPR antennas and frequency systems. NDT E Int. 2018, 93, 131–140. [Google Scholar] [CrossRef]
- Rial, F.; Pereira, M.; Lorenzo, H.; Arias, P.; Novo, A. Resolution of GPR bowtie antennas: An experimental approach. J. Appl. Geophys. 2009, 67, 367–373. [Google Scholar] [CrossRef]
- Fang, L.; Yang, F.; Xu, M.; Liu, F. Research on Development 3D Ground Penetrating Radar Acquisition and Control Technology for Road Underground Diseases with Dual-Band Antenna Arrays. Sensors 2023, 23, 8301. [Google Scholar] [CrossRef] [PubMed]
- Sénéchal, P.; Perroud, H.; Sénéchal, G. Interpretation of reflection attributes in a 3-D GPR survey at Vallée d’Ossau, western Pyrenees, France. Geophysics 2000, 65, 1435–1445. [Google Scholar] [CrossRef]
- McClymont, A.F.; Green, A.G.; Streich, R.; Horstmeyer, H.; Tronicke, J.; Nobes, D.C.; Pettinga, J.R.; Campbell, J.K.; Lan-gridge, R.M. Visualization of active faults using geometric attributes of 3D GPR data: An example from the Alpine Fault Zone, New Zealand. Geophysics 2008, 73, 11–23. [Google Scholar] [CrossRef]
- Allroggen, N.; Heincke, B.; Koyan, P.; Wheeler, W.; Rønning, J. 3D GPR attribute classification: A case study from a paleokarst breccia pipe in the Billefjorden area on Spitsbergen, Svalbard. Geophysics 2020, 87, WB19–WB30. [Google Scholar] [CrossRef]
- Shweta, T.; Lakshi, R. Impact of GPR antenna height in estimating coal layer thickness using spatial smoothing techniques. IET Sci. Meas. Technol. 2020, 14, 906–912. [Google Scholar] [CrossRef]
- Lei, Y.; Jiang, B.; Su, G.; Zou, Y.; Qi, F.; Li, B.; Jia, F.; Tian, T.; Qu, Q. Application of Air-Coupled Ground Penetrating Radar Based on F-K Filtering and BP Migration in High-Speed Railway Tunnel Detection. Sensors 2023, 23, 4343. [Google Scholar] [CrossRef] [PubMed]
- Geophysical Survey Systems, Inc. GSSI. RADAN 7.6 Software. Available online: https://www.geophysical.com/software/ (accessed on 28 May 2024).
- Toomey, R.S. Geological Monitoring of Caves and Associated Landscapes. In Geological Monitoring; Young, R., Norby, L., Eds.; Geological Society of America: Boulder, CO, USA, 2009; pp. 27–46. [Google Scholar] [CrossRef]
- Kalhor, K.; Ghasemizadeh, R.; Rajic, L.; Alshawabkeh, A. Assessment of groundwater quality and remediation in karst aquifers: A review. Groundw. Sustain. Dev. 2019, 8, 104–121. [Google Scholar] [CrossRef] [PubMed]
- Beynen, P.E. Karst Management; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Smith, J. Topographic Analysis in Hydrology. J. Hydrol. Sci. 2015, 60, 775–789. [Google Scholar]
- QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Beaverton, OR, USA, 2022; Available online: http://qgis.osgeo.org (accessed on 27 July 2023).
- Strahler, A.N. Hypsometric (area-altitude) analysis of erosional topology. Geol. Soc. Am. Bull. 1952, 63, 1117–1142. [Google Scholar] [CrossRef]
- Horton, R.E. Erosional development of streams and their drainage basins: Hydrophysical approach to quantitative morphology. Geol. Soc. Am. Bull. 1945, 56, 275–370. [Google Scholar] [CrossRef]
- Sáez, M.; Benavente, D.; Cuezva, S.; Huc, M.; Fernández-Cortés, A.; Mialon, A.; Kerr, Y.; Sánchez-Moral, S.; Mangiarotti, S. Scenarios for the altamira cave CO2 concentration from 1950 to 2100. Sci. Rep. 2024, 14, 10359. [Google Scholar] [CrossRef] [PubMed]
- Nardino, M.; Prada-Freixedo, A.; Famulari, D.; Brilli, L.; Cavaliere, A.; Carotenuto, F.; Chieco, C.; Gioli, B.; Giordano, T.; Martelli, F.; et al. Intensive campaign on continuous isotopic sampling for environmental criticality in the Stalactites cave of Altamira karst. In Proceedings of the Science and Art IX, Science and Technology Applied to Heritage Conservation, Madrid, Spain, 17–19 October 2022; La Ciencia y el Arte IX; Ciencias y Tecnologías Aplicadas a la Conservación del Patrimonio. Ministerio de Cultura y Deporte: Madrid, Spain, 2023; pp. 159–170. [Google Scholar]
- Sainz, C.; Fábrega, J.; Rábago, D.; Celaya, S.; Fernandez, A.; Fuente, I.; Fernandez, E.; Quindos, J.; Arteche, J.L.; Quindos, L. Use of Radon and CO2 for the Identification and Analysis of Short-Term Fluctuations in the Ventilation of the Polychrome Room Inside the Altamira Cave. Int. J. Environ. Res. Public Health 2022, 19, 3662. [Google Scholar] [CrossRef] [PubMed]
- Hoyos, M.; Soler, V.; Sánchez-Moral, S.; Cañaveras, J.C.; Sanz-Rubio, E. Carbon Dioxide Fluxes in Karstic Caves (Altamira and Tito Bustillo Caves, Spain); International Geological Correlation Programme 379 Newsletter; IGCP: Paris, France, 1998; pp. 43–44. [Google Scholar]
- Prada, A. The cave of Altamira and its Preventive Conservation Plan. Ice Age Eur. Mag. 2019, 8–9. [Google Scholar]
- Valle, F.J.; Moya, J.S.; y Cendrero, A. Estudio de la roca soporte de las pinturas rupestres de la cueva de Altamira. Zephyrus 1978, XXVIII–XXIX, 5–15. [Google Scholar]
- Carrera, F. Estrategias para la protección:¿cómo gestionar el riesgo? In Proceedings of the Actas del I Encuentro Nacional de Arte Rupestre Investigación, Conservación, Gestión y Difusión, Madrid, Spain, 11–12 November 2020; pp. 171–182. [Google Scholar]
Frequency | 1.6 GHz | 900 MHz | 400 MHz |
---|---|---|---|
Frequency Range | 1.3–1.9 GHz | 600–1200 MHz | 250–600 MHz |
Wavelength in Air (m) | ~0.1875 | ~0.333 | ~0.75 |
Wavelength (ε = 7.5) (m) | ~0.0684 | ~0.1213 | ~0.2732 |
Minimum Resolution (ε = 7.5) (m) | ~0.0342 | ~0.0606 | ~0.1366 |
Estimated Maximum Depth (ε = 7.5) N = 20 (m) | ~1.1 m | ~0.456 m | 1.026 m |
Estimated Maximum Depth (ε = 7.5) N = 100 (m) | ~0.4 m | ~2.28 m | ~5.13 m |
Vertical and Horizontal Resolution | 0.0342 m | 0.0606 m | 0.1366 m |
Image Clarity (Entropy) | 0.8–1.0 | 0.5–0.8 | 0.2–0.5 |
Signal Attenuation | High (50–70 dB) | Moderate (30–50 dB) | Low (20–30 dB) |
Antenna Gain | High (20–30 dB) | Medium (10–20 dB) | Low (0–10 dB) |
Antenna Beamwidth | 15° | 25–30° | 45–50° |
Signal-to-Noise Ratio (SNR) | 15 dB | 12 dB | 10 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayarri, V.; Prada, A.; García, F.; De Las Heras, C.; Fatás, P. Remote Sensing and Environmental Monitoring Analysis of Pigment Migrations in Cave of Altamira’s Prehistoric Paintings. Remote Sens. 2024, 16, 2099. https://doi.org/10.3390/rs16122099
Bayarri V, Prada A, García F, De Las Heras C, Fatás P. Remote Sensing and Environmental Monitoring Analysis of Pigment Migrations in Cave of Altamira’s Prehistoric Paintings. Remote Sensing. 2024; 16(12):2099. https://doi.org/10.3390/rs16122099
Chicago/Turabian StyleBayarri, Vicente, Alfredo Prada, Francisco García, Carmen De Las Heras, and Pilar Fatás. 2024. "Remote Sensing and Environmental Monitoring Analysis of Pigment Migrations in Cave of Altamira’s Prehistoric Paintings" Remote Sensing 16, no. 12: 2099. https://doi.org/10.3390/rs16122099