Assessment of Accuracy of Moderate-Resolution Imaging Spectroradiometer Sea Surface Temperature at High Latitudes Using Saildrone Data
Abstract
:1. Introduction
2. Data and Methods
2.1. MODIS SST Data
+ a4(mirror) + a5(θ) + a6(θ2)
2.2. Saildrone Cruises and Data
2.2.1. Saildrone Arctic Cruises
2.2.2. Saildrone Data
2.3. MERRA-2 Data
2.4. Quality Control and Collocation
3. Results
- They are not caused by instrumental artifacts in the Terra and/or Aqua MODIS measurements as the comparisons are very similar for both.
- For the same reasons, they are not caused by different overpass times of the two satellites.
- For the same reasons, they are not caused by inadvertent errors in the coding or applications of cloud screening and atmospheric correction algorithms, nor in the MUDB generation for the two satellite instruments.
- They are not caused by differences in the SSTskin retrievals from the two Saildrones, as when they were operating close together, the differences in the SSTskin values were small and within expectations.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardman-Mountford, N.; Richardson, A.; Agenbag, J.; Hagen, E.; Nykjaer, L.; Shillington, F.; Villacastin, C. Ocean climate of the South East Atlantic observed from satellite data and wind models. Prog. Oceanogr. 2003, 59, 181–221. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Banzon, V.; Smith, T.M.; Chin, T.M.; Liu, C.; Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef]
- Babin, S.M.; Carton, J.A.; Dickey, T.D.; Wiggert, J.D. Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. Oceans 2004, 109, 21. [Google Scholar] [CrossRef]
- Stramma, L.; Cornillon, P.; Price, J.F. Satellite observations of sea surface cooling by hurricanes. J. Geophys. Res. Oceans 1986, 91, 5031–5035. [Google Scholar] [CrossRef]
- Lee, T.; McPhaden, M.J. Increasing intensity of El Niño in the central-equatorial Pacific. Geophys. Res. Lett. 2010, 37, 5. [Google Scholar] [CrossRef]
- Thomas, A.C.; Blanco, J.L.; Carr, M.E.; Strub, P.T.; Osses, J. Satellite-measured chlorophyll and temperature variability off northern Chile during the 1996–1998 La Niña and El Niño. J. Geophys. Res. Ocean 2001, 106, 899–915. [Google Scholar] [CrossRef]
- Casey, K.S.; Brandon, T.B.; Cornillon, P.; Evans, R. The Past, Present, and Future of the AVHRR Pathfinder SST Program, in Oceanography from Space; Revisited, V., Barale, J.F.R., Alberotanza, L., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 273–287. [Google Scholar]
- Kilpatrick, K.; Podestá, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Brown, O.; Minnett, P.; Evans, R. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 2015, 165, 27–41. [Google Scholar] [CrossRef]
- Minnett, P.J.; Kilpatrick, K.A.; Podestá, G.P.; Evans, R.H.; Szczodrak, M.D.; Izaguirre, M.A.; Williams, E.J.; Walsh, S.; Reynolds, R.M.; Bailey, S.W.; et al. Skin Sea-Surface Temperature from VIIRS on Suomi-NPP—NASA Continuity Retrievals. Remote Sens. 2020, 12, 3369. [Google Scholar] [CrossRef]
- Coppo, P.; Ricciarelli, B.; Brandani, F.; Delderfield, J.; Ferlet, M.; Mutlow, C.; Munro, G.; Nightingale, T.; Smith, D.; Bianchi, S.; et al. SLSTR: A high accuracy dual scan temperature radiometer for sea and land surface monitoring from space. J. Mod. Opt. 2010, 57, 1815–1830. [Google Scholar] [CrossRef]
- Wang, H.; Guan, L.; Chen, G. Evaluation of Sea Surface Temperature From FY-3C VIRR Data in the Arctic. IEEE Geosci. Remote Sens. Lett. 2016, 13, 292–296. [Google Scholar] [CrossRef]
- Donlon, C.; Casey, K.; Gentemann, C.; LeBorgne, P.; Robinson, I.; Reynolds, R.; Merchant, C.; Llewellyn-Jones, D.; Minnett, P.J.; Piolle, J.F.; et al. Successes and challenges for the modern sea surface temperature observing system. In Proceedings of the OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2010; Volume 2, p. 22. [Google Scholar] [CrossRef]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.M.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.J.; Gentemann, C.L.; Høyer, J.L.; et al. Observational Needs of Sea Surface Temperature. Front. Mar. Sci. 2019, 6, 27. [Google Scholar] [CrossRef]
- Shupe, M.D.; Walden, V.P.; Eloranta, E.; Uttal, T.; Campbell, J.R.; Starkweather, S.M.; Shiobara, M. Clouds at Arctic Atmospheric Observatories. Part I: Occurrence and Macrophysical Properties. J. Appl. Meteorol. Clim. 2011, 50, 626–644. [Google Scholar] [CrossRef]
- Høyer, J.L.; Karagali, I.; Dybkjær, G.; Tonboe, R. Multi sensor validation and error characteristics of Arctic satellite sea surface temperature observations. Remote Sens. Environ. 2012, 121, 335–346. [Google Scholar] [CrossRef]
- Jia, C.; Minnett, P.J. High latitude sea surface temperatures derived from MODIS infrared measurements. Remote Sens. Environ. 2020, 251, 112094. [Google Scholar] [CrossRef]
- Castro, S.L.; Wick, G.A.; Steele, M. Validation of satellite sea surface temperature analyses in the Beaufort Sea using UpTempO buoys. Remote Sens. Environ. 2016, 187, 458–475. [Google Scholar] [CrossRef]
- Vincent, R. The Case for a Single Channel Composite Arctic Sea Surface Temperature Algorithm. Remote Sens. 2019, 11, 2393. [Google Scholar] [CrossRef]
- Donlon, C.; Robinson, I.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piollé, J.; et al. The Global Ocean Data Assimilation Experiment High-resolution Sea Surface Temperature Pilot Project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1214. [Google Scholar] [CrossRef]
- Saunders, P.M. The Temperature at the Ocean-Air Interface. J. Atmospheric Sci. 1967, 24, 269–273. [Google Scholar] [CrossRef]
- Flament, P.; Firing, J.; Sawyer, M.; Trefois, C. Amplitude and Horizontal Structure of a Large Diurnal Sea Surface Warming Event during the Coastal Ocean Dynamics Experiment. J. Phys. Oceanogr. 1994, 24, 124–139. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Minnett, P.J.; Le Borgne, P.; Merchant, C.J. Multi-satellite measurements of large diurnal warming events. Geophys. Res. Lett. 2008, 35, 6. [Google Scholar] [CrossRef]
- Minnett, P.J.; Knuteson, R.O.; Best, F.A.; Osborne, B.J.; Hanafin, J.A.; Brown, O.B. The Marine-Atmospheric Emitted Radiance Interferometer: A High-Accuracy, Seagoing Infrared Spectroradiometer. J. Atmospheric Ocean. Technol. 2001, 18, 994–1013. [Google Scholar] [CrossRef]
- Jessup, A.T.; Branch, R. Integrated Ocean Skin and Bulk Temperature Measurements Using the Calibrated Infrared In Situ Measurement System (CIRIMS) and Through-Hull Ports. J. Atmospheric Ocean. Technol. 2008, 25, 579–597. [Google Scholar] [CrossRef]
- Donlon, C.; Robinson, I.S.; Wimmer, W.; Fisher, G.; Reynolds, M.; Edwards, R.; Nightingale, T.J. An Infrared Sea Surface Temperature Autonomous Radiometer (ISAR) for Deployment aboard Vol-unteer Observing Ships (VOS). J. Atmos. Ocean. Technol. 2008, 25, 93–113. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, F.; Wang, X.; Wang, D.; Gulev, S.K. Cool Skin Effect and its Impact on the Computation of the Latent Heat Flux in the South China Sea. J. Geophys. Res. Oceans 2021, 126, 2020JC016498. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Minnett, P.J.; Sienkiewicz, J.; Demaria, M.; Cummings, J.; Jin, Y.; Doyle, J.D.; Gramer, L.; Barron, C.N.; Casey, K.S.; et al. MISST: The Multi-Sensor Improved Sea Surface Temperature Project. Oceanography 2009, 22, 76–87. [Google Scholar] [CrossRef]
- Gentemann, C.L.; Minnett, P.J.; Steele, M.; Jenkins, R.; Cayula, J.F.; Castro, S.L.; Cornillon, P.; Robinson, D.H.; Harris, A.; Armstrong, E.M.; et al. Arctic MISST: Multi-sensor Improved Sea Surface Temperature: Continuing the GHRSST Partnership and Improving Arctic data. In Proceedings of the AGU Fall Meeting, Washington, DC, USA, 10–14 December 2018; p. A24K-11. [Google Scholar]
- Jia, C.; Minnett, P.J.; Szczodrak, M.; Izaguirre, M. High Latitude Sea Surface Skin Temperatures Derived From Saildrone Infrared Measurements. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4200214. [Google Scholar] [CrossRef]
- Koutantou, K.; Brunner, P.; Vazquez-Cuervo, J. Validation of NASA Sea Surface Temperature Satellite Products Using Saildrone Data. Remote Sens. 2023, 15, 2277. [Google Scholar] [CrossRef]
- Vazquez-Cuervo, J.; Gomez-Valdes, J.; Bouali, M.; Miranda, L.E.; Van der Stocken, T.; Tang, W.; Gentemann, C. Using Saildrones to Validate Satellite-Derived Sea Surface Salinity and Sea Surface Temperature along the California/Baja Coast. Remote Sens. 2019, 11, 1964. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podestá, G.; Williams, E.; Walsh, S.; Minnett, P.J. Alternating Decision Trees for Cloud Masking in MODIS and VIIRS NASA Sea Surface Temperature Products. J. Atmospheric Ocean. Technol. 2019, 36, 387–407. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Gentemann, C.; Szczodrak, G. Improving satellite retrieved night-time infrared sea surface temperatures in aerosol contaminated regions. Remote Sens. Environ. 2019, 223, 8–20. [Google Scholar] [CrossRef]
- Minnett, P.; Alvera-Azcárate, A.; Chin, T.; Corlett, G.; Gentemann, C.; Karagali, I.; Li, X.; Marsouin, A.; Marullo, S.; Maturi, E.; et al. Half a century of satellite remote sensing of sea-surface temperature. Remote Sens. Environ. 2019, 233, 111366. [Google Scholar] [CrossRef]
- Walton, C.C.; Pichel, W.G.; Sapper, J.F.; May, D.A. The development and operational application of nonlinear algorithms for the measurement of sea surface temperatures with the NOAA polar-orbiting environmental satellites. J. Geophys. Res. Oceans 1998, 103, 27999–28012. [Google Scholar] [CrossRef]
- Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote Sens. Environ. 2017, 200, 154–169. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Minnett, P.J. Ocean Warm Skin Signals Observed by Saildrone at High Latitudes. Geophys. Res. Lett. 2023, 50, e2022GL102384. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. In situ SST Quality Monitor (iQuam). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Donlon, C.J.; Minnett, P.J.; Gentemann, C.; Nightingale, T.J.; Barton, I.J.; Ward, B.; Murray, M.J. Toward improved validation of satellite sea surface skin temperature measurements for climate research. J. Clim. 2002, 15, 353–369. [Google Scholar] [CrossRef]
- Minnett, P.J.; Smith, M.; Ward, B. Measurements of the oceanic thermal skin effect. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2011, 58, 861–868. [Google Scholar] [CrossRef]
- Minnett, P.J. Radiometric measurements of the sea-surface skin temperature—The competing roles of the diurnal thermo-cline and the cool skin. Int. J. Remote Sens. 2003, 24, 5033–5047. [Google Scholar] [CrossRef]
- Zhang, H.; Beggs, H.; Ignatov, A.; Babanin, A.V. Nighttime Cool Skin Effect Observed from Infrared SST Autonomous Radiometer (ISAR) and Depth Temperatures. J. Atmospheric Ocean. Technol. 2020, 37, 33–46. [Google Scholar] [CrossRef]
- Castro, S.L.; Wick, G.A.; Minnett, P.J.; Jessup, A.T.; Emery, W.J. The impact of measurement uncertainty and spatial variability on the accuracy of skin and subsurface regression-based sea surface temperature algorithms. Remote Sens. Environ. 2010, 114, 2666–2678. [Google Scholar] [CrossRef]
- Jia, C.; Minnett, P.J.; Luo, B. Significant Diurnal Warming Events Observed by Saildrone at High Latitudes. J. Geophys. Res. Oceans 2023, 128, e2022JC019368. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Hocking, J.; Vidot, J.; Brunel, P.; Roquet, P.; Silveira, B.; Turner, E.; Lupu, C. A new gas absorption optical depth parameterisation for RTTOV version 13. Geosci. Model Dev. 2021, 14, 2899–2915. [Google Scholar] [CrossRef]
- Alappattu, D.P.; Wang, Q.; Yamaguchi, R.; Lind, R.J.; Reynolds, M.; Christman, A.J. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea inter-action studies. J. Geophys. Res. Ocean. 2017, 122, 6470–6481. [Google Scholar] [CrossRef]
- Luo, B.; Minnett, P.J.; Szczodrak, M.; Akella, S. Regional and Seasonal Variability of the Oceanic Thermal Skin Effect. J. Geophys. Res. Oceans 2022, 127, e2022JC018465. [Google Scholar] [CrossRef]
- Merchant, C.J.; Harris, A.R.; Roquet, H.; Le Borgne, P. Retrieval characteristics of non-linear sea surface temperature from the Advanced Very High Resolution Radiometer. Geophys. Res. Lett. 2009, 36, 5. [Google Scholar] [CrossRef]
- Zhang, H.; Beggs, H.; Merchant, C.J.; Wang, X.H.; Majewski, L.; Kiss, A.E.; Rodríguez, J.; Thorpe, L.; Gentemann, C.; Brunke, M. Comparison of SST Diurnal Variation Models Over the Tropical Warm Pool Region. J. Geophys. Res. Oceans 2018, 123, 3467–3488. [Google Scholar] [CrossRef]
- Rantanen, M.; Karpechko, A.Y.; Lipponen, A.; Nordling, K.; Hyvärinen, O.; Ruosteenoja, K.; Vihma, T.; Laaksonen, A. The Arctic has warmed nearly four times faster than the globe since 1979. Commun. Earth Environ. 2022, 3, 168. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
Aqua | Terra | |||||
---|---|---|---|---|---|---|
SD-1036 | SD-1037 | Total | SD-1036 | SD-1037 | Total | |
Mean | −0.073 | −0.468 | −0.263 | −0.076 | −0.490 | −0.291 |
Median | −0.036 | −0.352 | −0.214 | −0.021 | −0.379 | −0.207 |
STD | 0.727 | 0.701 | 0.741 | 0.649 | 0.752 | 0.734 |
RSD | 0.656 | 0.588 | 0.669 | 0.551 | 0.565 | 0.559 |
RMS | 0.730 | 0.842 | 0.786 | 0.653 | 0.897 | 0.789 |
R | 0.943 | 0.947 | 0.948 | 0.956 | 0.945 | 0.947 |
Num | 411 | 380 | 791 | 409 | 444 | 853 |
Aqua | Terra | |||
---|---|---|---|---|
QL = 0 | QL = 1 | QL = 0 | QL = 1 | |
Mean | −0.173 (−0.004; −0.345) | −0.505 (−0.239; −0.844) | −0.198 (0.034; −0.412) | −0.559 (−0.394; −0.706) |
Median | −0.138 (0.057; −0.250) | −0.496 (0.315; −0.696) | −0.132 (0.064; −0.279) | −0.492 (−0.272; −0.667) |
STD | 0.674 (0.672; 0.631) | 0.855 (0.826; 0.770) | 0.690 (0.636; 0.670) | 0.788 (0.581; 0.913) |
RSD | 0.561 (0.562; 0.529) | 0.762 (0.804; 0.682) | 0.500 (0.538; 0.476) | 0.670 (0.639; 0.610) |
RMS | 0.695 (0.671; 0.718) | 0.991 (0.857; 1.140) | 0.717 (0.636; 0.786) | 0.965 (0.700; 1.152) |
R | 0.956 (0.955; 0.960) | 0.908 (0.914; 0.923) | 0.954 (0.959; 0.956) | 0.933 (0.960; 0.919) |
Num | 577 (291; 286) | 214 (120; 94) | 631 (304; 327) | 222 (105; 117) |
Depth | Mean | Median | STD | RSD | RMS | R | N |
---|---|---|---|---|---|---|---|
0 m (skin) | 0.041 | 0.040 | 0.134 | 0.125 | 0.140 | 0.951 | 237 |
−0.33 m | 0.008 | 0.008 | 0.113 | 0.051 | 0.113 | 0.993 | 903 |
−0.47 m | 0.023 | 0.010 | 0.095 | 0.080 | 0.097 | 0.993 | 299 |
−0.54 m | 0.003 | 0.011 | 0.095 | 0.043 | 0.095 | 0.995 | 889 |
−0.81 m | −0.001 | 0.007 | 0.094 | 0.041 | 0.094 | 0.996 | 903 |
−1.20 m | −0.014 | 0.003 | 0.093 | 0.034 | 0.094 | 0.995 | 742 |
−1.42 m | −0.013 | 0.003 | 0.094 | 0.034 | 0.095 | 0.995 | 742 |
−1.71 m | −0.011 | 0.003 | 0.096 | 0.031 | 0.097 | 0.995 | 742 |
Aqua | Terra | |||||
---|---|---|---|---|---|---|
SD-1036 | SD-1037 | Total | SD-1036 | SD-1037 | Total | |
Mean | −0.057 | −0.417 | −0.234 | −0.072 | −0.501 | −0.295 |
Median | −0.007 | −0.335 | −0.193 | −0.022 | −0.392 | −0.219 |
STD | 0.670 | 0.635 | 0.677 | 0.647 | 0.739 | 0.728 |
RSD | 0.590 | 0.570 | 0.638 | 0.496 | 0.534 | 0.532 |
RMS | 0.671 | 0.759 | 0.716 | 0.650 | 0.892 | 0.785 |
R | 0.953 | 0.957 | 0.953 | 0.958 | 0.947 | 0.949 |
Num | 325 | 316 | 641 | 342 | 370 | 712 |
Mean | Median | STD | RSD | RMS | R | Num | |
---|---|---|---|---|---|---|---|
SD-1036 | 0.296 | 0.390 | 0.656 | 0.564 | 0.718 | 0.953 | 325 |
SD-1037 | 0.017 | 0.146 | 0.679 | 0.635 | 0.678 | 0.949 | 316 |
Total | 0.158 | 0.255 | 0.681 | 0.605 | 0.699 | 0.949 | 641 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, C.; Minnett, P.J.; Szczodrak, M. Assessment of Accuracy of Moderate-Resolution Imaging Spectroradiometer Sea Surface Temperature at High Latitudes Using Saildrone Data. Remote Sens. 2024, 16, 2008. https://doi.org/10.3390/rs16112008
Jia C, Minnett PJ, Szczodrak M. Assessment of Accuracy of Moderate-Resolution Imaging Spectroradiometer Sea Surface Temperature at High Latitudes Using Saildrone Data. Remote Sensing. 2024; 16(11):2008. https://doi.org/10.3390/rs16112008
Chicago/Turabian StyleJia, Chong, Peter J. Minnett, and Malgorzata Szczodrak. 2024. "Assessment of Accuracy of Moderate-Resolution Imaging Spectroradiometer Sea Surface Temperature at High Latitudes Using Saildrone Data" Remote Sensing 16, no. 11: 2008. https://doi.org/10.3390/rs16112008
APA StyleJia, C., Minnett, P. J., & Szczodrak, M. (2024). Assessment of Accuracy of Moderate-Resolution Imaging Spectroradiometer Sea Surface Temperature at High Latitudes Using Saildrone Data. Remote Sensing, 16(11), 2008. https://doi.org/10.3390/rs16112008