Real-Time Three-Dimensional Tracking of Distant Moving Objects Using Non-Imaging Single-Pixel LiDAR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Single-Pixel LiDAR
2.2. Non-Imaging Three-Dimensional Localization Method for Moving Targets
2.2.1. Model for Detection and Tracking of Moving Targets in Single-Pixel Lidar
2.2.2. Model for Detecting and Tracking Moving Targets in Single-Pixel Lidar
3. Results
Algorithm 1: Pseudo code for processing and three-dimensional target positioning. |
Top ranging: τm = find_peakposition(Sum_Im) return τm Projection curve: Ix,n(τm)←sum(Ix,n(τm−c1:τm+c2)) Iy,n(τm)←sum(Iy,n(τm−c1:τm+c2)) *1 return ft,x(y,τm), ft,y(x,τm) 3D positioning: zm = ctm/2 (xm, ym) = fmax[ft,x(y,zm), ft,y(x,zm)] return xm, ym, zm |
3.1. Distance Accuracy
3.2. Angular Positioning Accuracy
3.3. Single-Target 3D Tracking
3.4. Multi-Target 3D Tracking
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Greenberg, J.; Krishnamurthy, K.; Brady, D. Compressive single-pixel snapshot X-ray diffraction imaging. Opt. Lett. 2014, 39, 111–114. [Google Scholar] [CrossRef] [PubMed]
- Lochocki, B.; Gambín, A.; Manzanera, S.; Irles, E.; Tajahuerce, E.; Lancis, J.; Artal, P. Single pixel camera ophthalmoscope. Optica 2016, 3, 1056–1059. [Google Scholar] [CrossRef]
- Dutta, R.; Manzanera, S.; Gambín-Regadera, A.; Irles, E.; Tajahuerce, E.; Lancis, J.; Artal, P. Single-pixel imaging of the retina through scattering media. Biomed. Opt. Express 2019, 10, 4159–4167. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.M.; Sun, B.; Edgar, M.P.; Phillips, D.B.; Hempler, N.; Maker, G.T.; Malcolm, G.P.; Padgett, M.J. Real-time imaging of methane gas leaks using a single-pixel camera. Opt. Express 2017, 25, 2998–3005. [Google Scholar] [CrossRef] [PubMed]
- Nutt, K.J.; Hempler, N.; Maker, G.T.; Malcolm, G.P.; Padgett, M.J.; Gibson, G.M. Developing a portable gas imaging camera using highly tunable active-illumination and computer vision. Opt. Express 2020, 28, 18566–18576. [Google Scholar] [CrossRef] [PubMed]
- Ma, J. Single-pixel remote sensing. IEEE Geosci. Remote Sens. Lett. 2009, 6, 199–203. [Google Scholar]
- Yu, W.-K.; Liu, X.-F.; Yao, X.-R.; Wang, C.; Zhai, Y.; Zhai, G.-J. Complementary compressive imaging for the telescopic system. Sci. Rep. 2014, 4, 5834. [Google Scholar] [CrossRef]
- Gong, W.; Zhao, C.; Yu, H.; Chen, M.; Xu, W.; Han, S. Three-dimensional ghost imaging lidar via sparsity constraint. Sci. Rep. 2016, 6, 26133. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Wang, Z.; Liao, J. Efficient algorithm for tracking the single target applied to optical-phased-array LiDAR. Appl. Opt. 2021, 60, 10843–10848. [Google Scholar] [CrossRef]
- Li, Z.; Liu, B.; Wang, H.; Yi, H.; Chen, Z. Advancement on target ranging and tracking by single-point photon counting lidar. Opt. Express 2022, 30, 29907–29922. [Google Scholar] [CrossRef]
- Dickey, J.O.; Bender, P.L.; Faller, J.E.; Newhall, X.X.; Ricklefs, R.L.; Ries, J.G.; Shelus, P.J.; Veillet, C.; Whipple, A.L.; Wiant, J.R.; et al. Lunar Laser Ranging: A Continuing Legacy of the Apollo Program. Science 1994, 265, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, Y.-J.; Lee, K.; Lee, S.; Kim, S.-W. Time-of-flight measurement with femtosecond light pulses. Nat. Photonics 2010, 4, 716–720. [Google Scholar] [CrossRef]
- Yoneda, K.; Tehrani, H.; Ogawa, T.; Hukuyama, N.; Mita, S. Lidar scan feature for localization with highly precise 3-D map. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June 2014; pp. 1345–1350. [Google Scholar]
- Zeng, S. A tracking system of multiple LiDAR sensors using scan point matching. IEEE Trans. Veh. Technol. 2013, 62, 2413–2420. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, Y.; Yang, J.; Kong, H. Lidar-based urban road detection by histograms of normalized inverse depths and line scanning. In Proceedings of the 2017 European Conference on Mobile Robots (ECMR), Paris, France, 6–8 September 2017; pp. 1–6. [Google Scholar]
- Hu, X.; Ye, L. A fast and simple method of building detection from LiDAR data based on scan line analysis. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, 2, 7–13. [Google Scholar] [CrossRef]
- Tian, Z.; Yang, G.; Zhang, Y.; Cui, Z.; Bi, Z. A range-gated imaging flash Lidar based on the adjacent frame difference method. Opt. Lasers Eng. 2021, 141, 106558. [Google Scholar] [CrossRef]
- Zhou, G.; Yang, J.; Li, X.; Yang, X. Advances of flash LiDAR development onboard UAV. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, 39, 193–198. [Google Scholar] [CrossRef]
- Radwell, N.; Johnson, S.D.; Edgar, M.P.; Higham, C.F.; Murray-Smith, R.; Padgett, M.J. Deep learning optimized single-pixel LiDAR. Appl. Phys. Lett. 2019, 115, 231101. [Google Scholar] [CrossRef]
- Zang, Z.; Li, Z.; Luo, Y.; Han, Y.; Li, H.; Liu, X.; Fu, H. Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal encoding. APL Photonics 2022, 7, 046102. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, W.; Zhai, A.; He, P.; Wang, D. DQN based single-pixel imaging. Opt. Express 2021, 29, 15463–15477. [Google Scholar] [CrossRef]
- Sun, S.; Zhao, W.; Zhai, A.; Wang, D. DCT single-pixel detecting for wavefront measurement. Opt. Laser Technol. 2023, 163, 109326. [Google Scholar] [CrossRef]
- Hosseinpoor, H.; Samadzadegan, F.; DadrasJavan, F. Pricise target geolocation and tracking based on UAV video imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 243–249. [Google Scholar] [CrossRef]
- Yang, X.; Shi, J.; Zhou, Y.; Wang, C.; Hu, Y.; Zhang, X.; Wei, S. Ground moving target tracking and refocusing using shadow in video-SAR. Remote Sens. 2020, 12, 3083. [Google Scholar] [CrossRef]
- Benfold, B.; Reid, I. Stable multi-target tracking in real-time surveillance video. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 3457–3464. [Google Scholar]
- Howland, G.A.; Lum, D.J.; Ware, M.R.; Howell, J.C. Photon counting compressive depth mapping. Opt. Express 2013, 21, 23822–23837. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.-J.; Edgar, M.P.; Gibson, G.M.; Sun, B.; Radwell, N.; Lamb, R.; Padgett, M.J. Single-pixel three-dimensional imaging with time-based depth resolution. Nat. Commun. 2016, 7, 12010. [Google Scholar] [CrossRef]
- Sun, S.; Hu, H.-K.; Xu, Y.-K.; Li, Y.-G.; Lin, H.-Z.; Liu, W.-T. Simultaneously tracking and imaging a moving object under photon crisis. Phys. Rev. Appl. 2022, 17, 024050. [Google Scholar] [CrossRef]
- Sun, S.; Gu, J.-H.; Lin, H.-Z.; Jiang, L.; Liu, W.-T. Gradual ghost imaging of moving objects by tracking based on cross correlation. Opt. Lett. 2019, 44, 5594–5597. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.-K.; Sun, S.; Lin, H.-Z.; Jiang, L.; Liu, W.-T. Denoising ghost imaging under a small sampling rate via deep learning for tracking and imaging moving objects. Opt. Express 2020, 28, 37284–37293. [Google Scholar] [CrossRef]
- Jiang, W.; Yin, Y.; Jiao, J.; Zhao, X.; Sun, B. 2,000,000 fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors. Photonics Res. 2022, 10, 2157–2164. [Google Scholar] [CrossRef]
- Ma, M.; Wang, C.; Jia, Y.; Guan, Q.; Liang, W.; Chen, C.; Zhong, X.; Deng, H. Rotationally synchronized single-pixel imaging for a fast-rotating object. Appl. Phys. Lett. 2023, 123, 081108. [Google Scholar] [CrossRef]
- Yan, R.; Li, D.; Zhan, X.; Chang, X.; Yan, J.; Guo, P.; Bian, L. Sparse single-pixel imaging via optimization in nonuniform sampling sparsity. Opt. Lett. 2023, 48, 6255–6258. [Google Scholar] [CrossRef]
- Cui, H.; Cao, J.; Hao, Q.; Zhou, D.; Zhang, H.; Lin, L.; Zhang, Y. Improving the quality of panoramic ghost imaging via rotation and scaling invariances. Opt. Laser Technol. 2023, 160, 109102. [Google Scholar] [CrossRef]
- Ma, M.; Liang, W.; Zhong, X.; Deng, H.; Shi, D.; Wang, Y.; Xia, M. Direct noise-resistant edge detection with edge-sensitive single-pixel imaging modulation. Intell. Comput. 2023, 2, 0050. [Google Scholar] [CrossRef]
- Shi, D.; Yin, K.; Huang, J.; Yuan, K.; Zhu, W.; Xie, C.; Liu, D.; Wang, Y. Fast tracking of moving objects using single-pixel imaging. Opt. Commun. 2019, 440, 155–162. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, J.; Deng, Q.; Zhong, J. Image-free real-time detection and tracking of fast moving object using a single-pixel detector. Opt. Express 2019, 27, 35394–35401. [Google Scholar] [CrossRef]
- Zha, L.; Shi, D.; Huang, J.; Yuan, K.; Meng, W.; Yang, W.; Jiang, R.; Chen, Y.; Wang, Y. Single-pixel tracking of fast-moving object using geometric moment detection. Opt. Express 2021, 29, 30327–30336. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Li, Y.; Dai, C.; Ye, J.T.; Huang, X.; Xu, F. Image-free target identification using a single-point single-photon LiDAR. Opt. Express 2023, 31, 30390–30401. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Xianfeng, H.; Fan, Z.; Deren, L. Intensity Correction of Terrestrial Laser Scanning Data by Estimating Laser Transmission Function. IEEE Trans. Geosci. Remote Sens. 2015, 53, 942–951. [Google Scholar] [CrossRef]
- Jauregui-Sánchez, Y.; Clemente, P.; Latorre-Carmona, P.; Tajahuerce, E.; Lancis, J. Signal-to-noise ratio of single-pixel cameras based on photodiodes. Appl. Opt. 2018, 57, B67–B73. [Google Scholar] [CrossRef]
LiDAR Types | Advantages | Disadvantages |
---|---|---|
Scanning LiDAR | High detection accuracy Appropriate detection range | Non-global detection |
Flash LiDAR | High detection frequency Global detection | Low signal-to-noise ratio Shorter detection range |
Module | Parameter |
---|---|
Schmidt–Cassegrain telescope | Focal length: 1430 mm Pupil size: 300 mm |
Laser system | Pulse duration: <10 ns Divergence angle: 0.5° Repetition rate: 400 Hz Wavelength: 1064 nm Max energy per pulse: 100 mJ |
DMD | Spatial resolution: 1920 × 1200 Refresh rate: 22.2 kHz |
APD | Responsivity @1060 nm: 42 A/W2 Dark current: 5/50 nA typ/max (1 mm) |
Digitizer | Sample rate: 1 GS/s ADC resolution: 16 bit |
Time (s) | Record (m) | Detect (m) | Error (m) | Time (s) | Record (m) | Detect (m) | Error (m) |
---|---|---|---|---|---|---|---|
4 | 2909.84 | 2910.55 | 0.71 | 28 | 3073.11 | 3073 | 0.11 |
8 | 2931.85 | 2932.75 | 0.9 | 32 | 3034.17 | 3034.15 | 0.02 |
12 | 2968.8 | 2969.95 | 1.15 | 36 | 2990.89 | 2990.8 | 0.09 |
16 | 3013.39 | 3014.35 | 0.96 | 40 | 2959.74 | 2960.35 | 0.61 |
20 | 3054.57 | 3055.6 | 1.03 | 44 | 2934.54 | 2934.4 | 0.14 |
24 | 3092.4 | 3092.5 | 0.1 | 48 | 2909.04 | 2909.35 | 0.31 |
Time (s) | 3 | 6 | 9 | 12 | 15 | 18 |
---|---|---|---|---|---|---|
Record (°) | 0.08235 | 0.14709 | 0.22895 | 0.33364 | 0.44023 | 0.48781 |
Detect (°) | 0.09375 | 0.15625 | 0.21875 | 0.34375 | 0.4375 | 0.46875 |
Error (°) | 0.0114 | 0.00916 | 0.0102 | 0.01011 | 0.00273 | 0.01906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; He, Z.; Jiang, R.; Li, Z.; Chen, H.; Wang, Y.; Shi, D. Real-Time Three-Dimensional Tracking of Distant Moving Objects Using Non-Imaging Single-Pixel LiDAR. Remote Sens. 2024, 16, 1924. https://doi.org/10.3390/rs16111924
Guo Z, He Z, Jiang R, Li Z, Chen H, Wang Y, Shi D. Real-Time Three-Dimensional Tracking of Distant Moving Objects Using Non-Imaging Single-Pixel LiDAR. Remote Sensing. 2024; 16(11):1924. https://doi.org/10.3390/rs16111924
Chicago/Turabian StyleGuo, Zijun, Zixin He, Runbo Jiang, Zhicai Li, Huiling Chen, Yingjian Wang, and Dongfeng Shi. 2024. "Real-Time Three-Dimensional Tracking of Distant Moving Objects Using Non-Imaging Single-Pixel LiDAR" Remote Sensing 16, no. 11: 1924. https://doi.org/10.3390/rs16111924
APA StyleGuo, Z., He, Z., Jiang, R., Li, Z., Chen, H., Wang, Y., & Shi, D. (2024). Real-Time Three-Dimensional Tracking of Distant Moving Objects Using Non-Imaging Single-Pixel LiDAR. Remote Sensing, 16(11), 1924. https://doi.org/10.3390/rs16111924