Biomass Burning in Northeast China over Two Decades: Temporal Trends and Geographic Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials
2.3. Methods
2.3.1. Trend Analysis
2.3.2. Correlation Analysis and Cluster Analysis
Cluster Analysis
Spatial Autocorrelation
3. Results
3.1. Spatiotemporal Distribution Characteristics and Cluster Analysis
3.2. Seasonal Pattern
3.3. Vertical Spatial Distribution Characteristics
3.4. The Spatial Autocorrelation of BB within the County
3.5. The Impact of BB on Atmospheric Environment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A Review of Biomass Burning: Emissions and Impacts on Air Quality, Health and Climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef]
- Hauser, S.; Norgrove, L. Slash-and-Burn Agriculture, Effects Of. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 551–562. ISBN 978-0-12-384720-1. [Google Scholar]
- Pan, X.; Ichoku, C.; Chin, M.; Bian, H.; Darmenov, A.; Colarco, P.; Ellison, L.; Kucsera, T.; Da Silva, A.; Wang, J.; et al. Six Global Biomass Burning Emission Datasets: Intercomparison and Application in One Global Aerosol Model. Atmos. Chem. Phys. 2020, 20, 969–994. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Han, H.; Zhao, T.; Zhang, X.; Zhuang, B.; Wang, T.; Chen, H.; Wu, Y.; Li, M. Collective Impacts of Biomass Burning and Synoptic Weather on Surface PM2.5 and CO in Northeast China. Atmos. Environ. 2019, 213, 64–80. [Google Scholar] [CrossRef]
- Vicente, E.D.; Alves, C.A. An Overview of Particulate Emissions from Residential Biomass Combustion. Atmos. Res. 2018, 199, 159–185. [Google Scholar] [CrossRef]
- Penner, J.; Dickinson, R.; O’Neill, C.A. Effects of Aerosol from Biomass Burning on the Global Radiation Budget. Science 1992, 256, 1432–1434. [Google Scholar] [CrossRef]
- Crutzen, P.; Andreae, M. Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 1990, 250, 1669–1678. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Y.; Wang, S.; Wei, C.; Pöhlker, M.L.; Pöhlker, C.; Artaxo, P.; Shrivastava, M.; Andreae, M.O.; Pöschl, U.; et al. Impact of Biomass Burning Aerosols on Radiation, Clouds, and Precipitation over the Amazon: Relative Importance of Aerosol–Cloud and Aerosol–Radiation Interactions. Atmos. Chem. Phys. 2020, 20, 13283–13301. [Google Scholar] [CrossRef]
- Dutta, M.; Chatterjee, A. Assessment of the Relative Influences of Long-Range Transport, Fossil Fuel and Biomass Burning from Aerosol Pollution under Restricted Anthropogenic Emissions: A National Scenario in India. Atmos. Environ. 2021, 255, 118423. [Google Scholar] [CrossRef]
- Johnson, M.S.; Strawbridge, K.; Knowland, K.E.; Keller, C.; Travis, M. Long-Range Transport of Siberian Biomass Burning Emissions to North America during FIREX-AQ. Atmos. Environ. 2021, 252, 118241. [Google Scholar] [CrossRef]
- Yang, J.; Kang, S.; Hu, Y.; Chen, X.; Rai, M. Springtime Biomass Burning Impacts Air Quality and Climate over the Tibetan Plateau. Atmos. Environ. 2023, 313, 120068. [Google Scholar] [CrossRef]
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; d’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Titos, G.; del Águila, A.; Cazorla, A.; Lyamani, H.; Casquero-Vera, J.A.; Colombi, C.; Cuccia, E.; Gianelle, V.; Močnik, G.; Alastuey, A.; et al. Spatial and Temporal Variability of Carbonaceous Aerosols: Assessing the Impact of Biomass Burning in the Urban Environment. Sci. Total Environ. 2017, 578, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Wan, Y.; Chen, Y.; Li, K. Identification and Spatiotemporal Distribution Analysis of Global Biomass Burning Based on Suomi-NPP VIIRS Nightfire Data. J. Clean. Prod. 2022, 359, 131959. [Google Scholar] [CrossRef]
- Luo, Y.; Wei, H.; Yang, K. The Impact of Biomass Burning Occurred in the Indo-China Peninsula on PM2.5 and Its Spatiotemporal Characteristics over Yunnan Province. Sci. Total Environ. 2024, 908, 168185. [Google Scholar] [CrossRef] [PubMed]
- Shang, X.; Lipponen, A.; Filioglou, M.; Sundström, A.-M.; Parrington, M.; Buchard, V.; Darmenov, A.S.; Welton, E.J.; Marinou, E.; Amiridis, V.; et al. Monitoring Biomass Burning Aerosol Transport Using CALIOP Observations and Reanalysis Models: A Canadian Wildfire Event in 2019. Atmos. Chem. Phys. 2024, 24, 1329–1344. [Google Scholar] [CrossRef]
- Fan, H.; Yang, X.; Zhao, C.; Yang, Y.; Shen, Z. Spatiotemporal Variation Characteristics of Global Fires and Their Emissions. Atmos. Chem. Phys. 2023, 23, 7781–7798. [Google Scholar] [CrossRef]
- Yin, S. Biomass Burning Spatiotemporal Variations over South and Southeast Asia. Environ. Int. 2020, 145, 106153. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Guo, M.; Wang, X.; Yamamoto, H.; Ou, W. Spatiotemporal Variation and Distribution Characteristics of Crop Residue Burning in China from 2001 to 2018. Environ. Pollut. 2021, 268, 115849. [Google Scholar] [CrossRef] [PubMed]
- Lian, C.; Xiao, C.; Feng, Z. Spatiotemporal Characteristics and Regional Variations of Active Fires in China since 2001. Remote Sens. 2023, 15, 54. [Google Scholar] [CrossRef]
- Wang, L.; Jin, X.; Wang, Q.; Mao, H.; Liu, Q.; Weng, G.; Wang, Y. Spatial and Temporal Variability of Open Biomass Burning in Northeast China from 2003 to 2017. Atmos. Ocean. Sci. Lett. 2020, 13, 240–247. [Google Scholar] [CrossRef]
- Ma, G.; Zhao, T.; Kong, S.; Bao, Y.; Chen, C.; Gong, S.; Guo, J.; Yu, C.; Wu, M.; Chang, J.; et al. Variations in FINN Emissions of Particulate Matters and Associated Carbonaceous Aerosols from Remote Sensing of Open Biomass Burning over Northeast China during 2002–2016. Sustainability 2018, 10, 3353. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, G.; Tong, D.Q.; Zhang, X.; Xiu, A.; Zhang, S. Interannual and Seasonal Variability of Greenhouse Gases and Aerosol Emissions from Biomass Burning in Northeastern China Constrained by Satellite Observations. Remote Sens. 2021, 13, 1005. [Google Scholar] [CrossRef]
- Zeng, X.; Li, S.; Xing, J.; Yang, J.; Wang, Q.; Song, G.; Teng, M.; Zhou, D.; Lu, J. CALIPSO-Observed Southeast Asia Biomass-Burning Influences on Aerosol Vertical Structure in Guangdong-Hong Kong-Macao Greater Bay Area. Atmos. Res. 2023, 289, 106755. [Google Scholar] [CrossRef]
- Wei, X.; Wang, G.; Chen, T.; Hagan, D.F.T.; Ullah, W. A Spatio-Temporal Analysis of Active Fires over China during 2003–2016. Remote Sens. 2020, 12, 1787. [Google Scholar] [CrossRef]
- Zhang, P. Revitalizing Old Industrial Base of Northeast China: Process, Policy and Challenge. Chin. Geogr. Sci. 2008, 18, 109–118. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Tong, Q.; Zhang, X.; Zhao, H.; Ma, S.; Xiu, A.; He, Y. Regional Characteristics and Causes of Haze Events in Northeast China. Chin. Geogr. Sci. 2018, 28, 836–850. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Ying, L.; Shen, Z.; Yang, M.; Piao, S. Wildfire Detection Probability of MODIS Fire Products under the Constraint of Environmental Factors: A Study Based on Confirmed Ground Wildfire Records. Remote Sens. 2019, 11, 3031. [Google Scholar] [CrossRef]
- Giglio, L.; Justice, C. MODIS/Terra Thermal Anomalies/Fire Daily L3 Global 1km SIN Grid V061 2021. Available online: https://lpdaac.usgs.gov/products/mod14a1v061/ (accessed on 20 May 2024).
- Crowley, M.A.; Liu, T. Active Fire Monitoring. In Cloud-Based Remote Sensing with Google Earth Engine: Fundamentals and Applications; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1005–1021. [Google Scholar]
- Friedl, M.; Sulla-Menashe, D. MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V061 2022. Available online: https://lpdaac.usgs.gov/products/mcd12q1v061/ (accessed on 20 May 2024).
- Brown, H.; Liu, X.; Pokhrel, R.; Murphy, S.; Lu, Z.; Saleh, R.; Mielonen, T.; Kokkola, H.; Bergman, T.; Myhre, G.; et al. Biomass Burning Aerosols in Most Climate Models Are Too Absorbing. Nat. Commun. 2021, 12, 277. [Google Scholar] [CrossRef]
- NASA/LARC/SD/ASDC CALIPSO Lidar Level 2 Aerosol Profile, V4-20 2018. Available online: https://www-calipso.larc.nasa.gov/ (accessed on 20 May 2024).
- Zhuang, Y.; Li, R.; Yang, H.; Chen, D.; Chen, Z.; Gao, B.; He, B. Understanding Temporal and Spatial Distribution of Crop Residue Burning in China from 2003 to 2017 Using MODIS Data. Remote Sens. 2018, 10, 390. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. I, II, III. Proc. K. Ned. Akad. Van Wet. 1950, 53, 386–392, 521–525, 1397–1412. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Akritas, M.G.; Murphy, S.A.; Lavalley, M.P. The Theil-Sen Estimator with Doubly Censored Data and Applications to Astronomy. J. Am. Stat. Assoc. 1995, 90, 170–177. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (Modified Least Squares) and Non-Parametric (Theil–Sen) Linear Regressions for Predicting Biophysical Parameters in the Presence of Measurement Errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Vaidyanathan, K.; Trivedi, K.S. A Comprehensive Model for Software Rejuvenation. IEEE Trans. Dependable Secur. Comput. 2005, 2, 124–137. [Google Scholar] [CrossRef]
- Siegel, A.F. Robust Regression Using Repeated Medians. Biometrika 1982, 69, 242–244. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Bai, L.; Lv, S.; Qu, Z.; Ren, H.; Wu, Q.; Han, G.; Li, Z. Effects of a Warming Gradient on Reproductive Phenology of Stipa Breviflora in a Desert Steppe. Ecol. Indic. 2022, 136, 108590. [Google Scholar] [CrossRef]
- Burn, D.H.; Hannaford, J.; Hodgkins, G.A.; Whitfield, P.H.; Thorne, R.; Marsh, T. Reference Hydrologic Networks II. Using Reference Hydrologic Networks to Assess Climate-Driven Changes in Streamflow. Hydrol. Sci. J. 2012, 57, 1580–1593. [Google Scholar] [CrossRef]
- Zhao, N.; Yue, T.; Li, H.; Zhang, L.; Yin, X.; Liu, Y. Spatio-Temporal Changes in Precipitation over Beijing-Tianjin-Hebei Region, China. Atmos. Res. 2018, 202, 156–168. [Google Scholar] [CrossRef]
- Campello, R.; Moulavi, D.; Zimek, A.; Sander, J. Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection. ACM Trans. Knowl. Discov. Data 2015, 10, 1–51. [Google Scholar] [CrossRef]
- Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Advances in Knowledge Discovery and Data Mining; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 160–172. [Google Scholar]
- Neto, A.C.A.; Sander, J.; Campello, R.J.G.B.; Nascimento, M.A. Efficient Computation and Visualization of Multiple Density-Based Clustering Hierarchies. IEEE Trans. Knowl. Data Eng. 2021, 33, 3075–3089. [Google Scholar] [CrossRef]
- Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, OR, USA, 2–4 August 1996; AAAI Press: Portland, OR, USA, 1996; pp. 226–231. [Google Scholar]
- Artés, T.; Oom, D.; De Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A Global Wildfire Dataset for the Analysis of Fire Regimes and Fire Behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Wang, X.; Chen, W.; Ding, N.; Cui, X.; Bai, M.; Chen, Z.; Li, M. A Novel Framework for Identifying Causes of Forest Fire Events Using Environmental and Temporal Characteristics of the Ignition Point in Fire Footprint. Ecol. Indic. 2024, 160, 111899. [Google Scholar] [CrossRef]
- Anwar, M.T.; Hadikurniawati, W.; Winarno, E.; Supriyanto, A. Wildfire Risk Map Based on DBSCAN Clustering and Cluster Density Evaluation. Adv. Sustain. Sci. Eng. Technol. 2019, 1, 0190102. [Google Scholar] [CrossRef]
- Su, H.; Ma, X.; Li, M. An Improved Spatio-Temporal Clustering Method for Extracting Fire Footprints Based on MCD64A1 in the Daxing’anling Area of North-Eastern China. Int. J. Wildland Fire 2023, 32, 679–693. [Google Scholar] [CrossRef]
- Zhang, X. Prediction of Fire Risk Based on Cloud Computing. Alex. Eng. J. 2021, 60, 1537–1544. [Google Scholar] [CrossRef]
- McInnes, L.; Healy, J. Accelerated Hierarchical Density Based Clustering. In Proceedings of the 2017 IEEE International Conference on Data Mining Workshops (ICDMW), New Orleans, LA, USA, 18–21 November 2017; pp. 33–42. [Google Scholar]
- Wu, Q.; Hong, S.; Yang, L.; Mu, H.; Huang, C.; Niu, X.; Zhong, Y.; Yi, J.; He, C. Coupling Coordination Relationships between Air Pollutant Concentrations and Emissions in China. Atmos. Pollut. Res. 2023, 14, 101678. [Google Scholar] [CrossRef]
- Xiang, Y.; Ye, Y.; Peng, C.; Teng, M.; Zhou, Z. Seasonal Variations for Combined Effects of Landscape Metrics on Land Surface Temperature (LST) and Aerosol Optical Depth (AOD). Ecol. Indic. 2022, 138, 108810. [Google Scholar] [CrossRef]
- Xu, H.; Li, C.; Wang, H.; Zhou, R.; Liu, M.; Hu, Y. Long-Term Spatiotemporal Patterns and Evolution of Regional Heat Islands in the Beijing–Tianjin–Hebei Urban Agglomeration. Remote Sens. 2022, 14, 2478. [Google Scholar] [CrossRef]
- Chang, Y.; Li, G.; Zhang, P.; Liu, Y.; Chen, Z.; Xing, G.; Li, M. Relationships among Six Urban Air Pollutants and Identification of Pollution Types—A Case Study of Chinese Cities above Prefecture Level. Atmos. Pollut. Res. 2024, 15, 102160. [Google Scholar] [CrossRef]
- Chengjing, N.; Yixuan, L.; Linsheng, Y.; Li, W.; Fengying, Z. Spatio-Temporal Characteristics and Coupling Coordination Relationship between Urbanization and Atmospheric Particulate Pollutants in the Bohai Rim in China. Ecol. Indic. 2023, 153, 110387. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on Continuous Stochastic Phenomena. Biometrika 1950, 37, 17. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Fang, Y.; Xu, K.; Guo, X.; Hong, Y. Identifying Determinants of Straw Open Field Burning in Northeast China: Toward Greening Agriculture Base in Newly Industrializing Countries. J. Rural. Stud. 2020, 74, 111–123. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, S.; Sun, L.; Yan, B.; Yang, T.; Yan, W.; Meadows, M.E.; Wang, C.; Qi, J. Characterizing the Changing Environment of Cropland in the Songnen Plain, Northeast China, from 1990 to 2015. J. Geogr. Sci. 2019, 29, 658–674. [Google Scholar] [CrossRef]
- Chen, C.; Qian, C.; Deng, A.; Zhang, W. Progressive and Active Adaptations of Cropping System to Climate Change in Northeast China. Eur. J. Agron. 2012, 38, 94–103. [Google Scholar] [CrossRef]
- Northeast Black Soil Protection and Utilization Report (2021); Chinese Academy of Sciences: Beijing, China, 2022; p. 25.
- Li, M.; Sicular, T. Aging of the Labor Force and Technical Efficiency in Crop Production: Evidence from Liaoning Province, China. China Agric. Econ. Rev. 2013, 5, 342–359. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Wang, Q.; Zhu, A.; Liu, Z.; Wang, Y.; Allen, D.T.; Li, L. Assessment of the Effects of Straw Burning Bans in China: Emissions, Air Quality, and Health Impacts. Sci. Total Environ. 2021, 789, 147935. [Google Scholar] [CrossRef]
- Cui, Y.; Di, H.; Xing, Y.; Chang, X.; Shan, W. Spatial and Temporal Distributions of Forest Fires in Heilongjiang Province from 2001 to 2018 Based on MODIS Data. J. Nanjing For. Univ. 2021, 45, 205. [Google Scholar]
- Tao, J.; Zhang, Y.; Yuan, X.; Wang, J.; Zhang, X. Analysis of Forest Fires in Northeast China from 2003 to 2011. Int. J. Remote Sens. 2013, 34, 8235–8251. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, Y.; Zhao, R.; Sui, H. The Use of Cultivated Land for Multiple Functions in Major Grain-Producing Areas in Northeast China: Spatial-Temporal Pattern and Driving Forces. Land 2022, 11, 1476. [Google Scholar] [CrossRef]
- Cui, P.; Chen, T.; Li, Y.; Liu, K.; Zhang, D.; Song, C. Comparison and Assessment of Different Land Cover Datasets on the Cropland in Northeast China. Remote Sens. 2023, 15, 5134. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, X. Spatiotemporal Variation Patterns and Aggregation of Crop Residue Burning at County Scale in Northeast China. IOP Conf. Ser. Earth Environ. Sci. 2022, 1004, 012003. [Google Scholar] [CrossRef]
- Bistinas, I.; Oom, D.; Sá, A.; Harrison, S.; Prentice, I.; Pereira, J.; Jiang, B. Relationships between Human Population Density and Burned Area at Continental and Global Scales. PLoS ONE 2013, 8, e81188. [Google Scholar] [CrossRef] [PubMed]
- You, H.; Yang, J.; Xue, B.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Spatial Evolution of Population Change in Northeast China during 1992–2018. Sci. Total Environ. 2021, 776, 146023. [Google Scholar] [CrossRef]
- Qi, W.; Liu, S.; Jin, F. Calculation and Spatial Evolution of Population Loss in Northeast China. Sci. Geogr. Sin 2017, 37, 1795–1804. [Google Scholar]
- Tian, X.; Shu, L.; Wang, M.; Zhao, F. The Impact of Climate Change on Fire Risk in Daxing’anling, China. J. For. Res. 2017, 28, 997–1006. [Google Scholar] [CrossRef]
- Sun, L.; Yang, L.; Xia, X.; Wang, D.; Zhang, T. Climatological Aspects of Active Fires in Northeastern China and Their Relationship to Land Cover. Remote Sens. 2022, 14, 2316. [Google Scholar] [CrossRef]
- Ke, H.; Gong, S.; He, J.; Zhou, C.; Zhang, L.; Zhou, Y. Spatial and Temporal Distribution of Open Bio-Mass Burning in China from 2013 to 2017. Atmos. Environ. 2019, 210, 156–165. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Wang, G.; Zhang, T.; Dai, W.; Ho, K.F.; Wang, Q.; Shao, Y.; Wu, C.; Li, L. Molecular Characteristics of Organic Compositions in Fresh and Aged Biomass Burning Aerosols. Sci. Total Environ. 2020, 741, 140247. [Google Scholar] [CrossRef] [PubMed]
- Karanasiou, A.; Alastuey, A.; Amato, F.; Renzi, M.; Stafoggia, M.; Tobias, A.; Reche, C.; Forastiere, F.; Gumy, S.; Mudu, P.; et al. Short-Term Health Effects from Outdoor Exposure to Biomass Burning Emissions: A Review. Sci. Total Environ. 2021, 781, 146739. [Google Scholar] [CrossRef] [PubMed]
- Tobler, W.R. A Computer Movie Simulating Urban Growth in the Detroit Region. Econ. Geogr. 1970, 46, 234–240. [Google Scholar] [CrossRef]
- Gao, C.; Xing, C.; Tan, W.; Lin, H.; Bu, N.; Xue, J.; Liu, F.; Liu, W. Vertical Characteristics and Potential Sources of Aerosols over Northeast China Using Ground-Based MAX-DOAS. Atmos. Pollut. Res. 2023, 14, 101691. [Google Scholar] [CrossRef]
- Zhao, H.; Ma, Y.; Wang, Y.; Wang, H.; Sheng, Z.; Gui, K.; Zheng, Y.; Zhang, X.; Che, H. Aerosol and Gaseous Pollutant Characteristics during the Heating Season (Winter–Spring Transition) in the Harbin-Changchun Megalopolis, Northeastern China. J. Atmos. Sol. Terr. Phys. 2019, 188, 26–43. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Xu, L.; Lin, Q.; Zhao, H.; Wang, Z.; Guo, S.; Hu, M.; Liu, D.; Shi, Z.; et al. Exploring Wintertime Regional Haze in Northeast China: Role of Coal and Biomass Burning. Atmos. Chem. Phys. 2020, 20, 5355–5372. [Google Scholar] [CrossRef]
- Tokinaga, H.; Tanimoto, Y.; Nonaka, M.; Taguchi, B.; Fukamachi, T.; Xie, S.; Nakamura, H.; Watanabe, T.; Yasuda, I. Atmospheric Sounding over the Winter Kuroshio Extension: Effect of Surface Stability on Atmospheric Boundary Layer Structure. Geophys. Res. Lett. 2006, 33, 2005GL025102. [Google Scholar] [CrossRef]
- Du, L.; Wang, R.; Wang, Z. Cutting Ties with Local Bureaucrats: How Does the Environmental Vertical Management Reform Affect Firm Pollution in China? J. Clean. Prod. 2024, 447, 141432. [Google Scholar] [CrossRef]
- Tianming, G.; Ivolga, A.; Erokhin, V. Sustainable Rural Development in Northern China: Caught in a Vice between Poverty, Urban Attractions, and Migration. Sustainability 2018, 10, 1467. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Yang, Q.; Liu, J.; Huang, F. Coupling Relationship between Agricultural Labor and Agricultural Production Against the Background of Rural Shrinkage: A Case Study of Songnen Plain, China. Sustainability 2019, 11, 5804. [Google Scholar] [CrossRef]
- Andreae, M.O. Emission of Trace Gases and Aerosols from Biomass Burning–an Updated Assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y. Quantification and Evaluation of Atmospheric Pollutant Emissions from Open Biomass Burning with Multiple Methods: A Case Study\hack\breakfor the Yangtze River Delta Region, China. Atmos. Chem. Phys. 2019, 19, 327–348. [Google Scholar] [CrossRef]
- Van Leeuwen, T.; Van Der Werf, G. Spatial and Temporal Variability in the Ratio of Trace Gases Emitted from Biomass Burning. Atmos. Chem. Phys. 2011, 11, 3611–3629. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of Trace Gases and Aerosols from Biomass Burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Yu, M.; Yuan, X.; He, Q.; Yu, Y.; Cao, K.; Yang, Y.; Zhang, W. Temporal-Spatial Analysis of Crop Residue Burning in China and Its Impact on Aerosol Pollution. Environ. Pollut. 2019, 245, 616–626. [Google Scholar] [CrossRef]
- Jena, C.; Ghude, S.D.; Pfister, G.G.; Chate, D.M.; Kumar, R.; Beig, G.; Surendran, D.E.; Fadnavis, S.; Lal, D.M. Influence of Springtime Biomass Burning in South Asia on Regional Ozone (O3): A Model Based Case Study. Atmos. Environ. 2015, 100, 37–47. [Google Scholar] [CrossRef]
- Anderson, D.C.; Nicely, J.M.; Salawitch, R.J.; Canty, T.P.; Dickerson, R.R.; Hanisco, T.F.; Wolfe, G.M.; Apel, E.C.; Atlas, E.; Bannan, T.; et al. A Pervasive Role for Biomass Burning in Tropical High Ozone/Low Water Structures. Nat. Commun. 2016, 7, 10267. [Google Scholar] [CrossRef]
- Ren, Y.; Shen, G.; Shen, H.; Zhong, Q.; Xu, H.; Meng, W.; Zhang, W.; Yu, X.; Yun, X.; Luo, Z.; et al. Contributions of Biomass Burning to Global and Regional SO2 Emissions. Atmos. Res. 2021, 260, 105709. [Google Scholar] [CrossRef]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse Policies Leading to Contrasting Impacts on Land Cover and Ecosystem Services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Uranishi, K.; Ikemori, F.; Shimadera, H.; Kondo, A.; Sugata, S. Impact of Field Biomass Burning on Local Pollution and Long-Range Transport of PM2.5 in Northeast Asia. Environ. Pollut. 2019, 244, 414–422. [Google Scholar] [CrossRef]
- Choi, S.H.; Manousiouthakis, V.I. On the Carbon Cycle Impact of Combustion of Harvested Plant Biomass vs. Fossil Carbon Resources. Comput. Chem. Eng. 2020, 140, 106942. [Google Scholar] [CrossRef]
- He, J.; Zhou, W.; Guo, S.; Deng, X.; Song, J.; Xu, D. Environmental Policy and Farmers’ Active Straw Return: Administrative Guidance or Economic Reward and Punishment. In Environment, Development and Sustainability; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–24. [Google Scholar]
- Yang, G.; Zhao, H.; Tong, D.Q.; Xiu, A.; Zhang, X.; Gao, C. Impacts of Post-Harvest Open Biomass Burning and Burning Ban Policy on Severe Haze in the Northeastern China. Sci. Total Environ. 2020, 716, 136517. [Google Scholar] [CrossRef]
- Li, W.; Duan, F.; Zhao, Q.; Song, W.; Cheng, Y.; Wang, X.; Li, L.; He, K. Investigating the Effect of Sources and Meteorological Conditions on Wintertime Haze Formation in Northeast China: A Case Study in Harbin. Sci. Total Environ. 2021, 801, 149631. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environmental Protection. The Ministry of Environmental Protection Has Launched Heavy Pollution Weather Inspections in the Three Eastern Provinces of China 2015. Available online: https://www.mee.gov.cn/gkml/sthjbgw/qt/201511/t20151110_316750.htm (accessed on 20 May 2024).
- Chen, J.; Gong, Y.; Wang, S.; Guan, B.; Balkovic, J.; Kraxner, F. To Burn or Retain Crop Residues on Croplands? An Integrated Analysis of Crop Residue Management in China. Sci. Total Environ. 2019, 662, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass Burning Emissions Estimated with a Global Fire Assimilation System Based on Observed Fire Radiative Power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; Van Der Werf, G.R. Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-generation Global Fire Emissions Database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef]
- Sofiev, M.; Vankevich, R.; Lotjonen, M.; Prank, M.; Petukhov, V.; Ermakova, T.; Koskinen, J.; Kukkonen, J. An Operational System for the Assimilation of the Satellite Information on Wild-Land Fires for the Needs of Air Quality Modelling and Forecasting. Atmos. Chem. Phys. 2009, 9, 6833–6847. [Google Scholar] [CrossRef]
- Cussac, M.; Marécal, V.; Thouret, V.; Josse, B.; Sauvage, B. The Impact of Biomass Burning on Upper Tropospheric Carbon Monoxide: A Study Using MOCAGE Global Model and IAGOS Airborne Data. Atmos. Chem. Phys. 2020, 20, 9393–9417. [Google Scholar] [CrossRef]
- Jiang, K.; Xing, R.; Luo, Z.; Huang, W.; Yi, F.; Men, Y.; Zhao, N.; Chang, Z.; Zhao, J.; Pan, B.; et al. Pollutant Emissions from Biomass Burning: A Review on Emission Characteristics, Environmental Impacts, and Research Perspectives. Particuology 2024, 85, 296–309. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, J.; Han, H.; Zhang, Y.; Jiang, Z.; Wang, H.; Meng, L.; Li, Y.C.; Liu, Y. Satellite-Observed Variations and Trends in Carbon Monoxide over Asia and Their Sensitivities to Biomass Burning. Remote Sens. 2020, 12, 830. [Google Scholar] [CrossRef]
- Grieco, F.; Pérot, K.; Murtagh, D.; Eriksson, P.; Forkman, P.; Rydberg, B.; Funke, B.; Walker, K.A.; Pumphrey, H.C. Recovery and Validation of Odin/SMR Long-Term Measurements of Mesospheric Carbon Monoxide. Atmos. Meas. Tech. 2020, 13, 5013–5031. [Google Scholar] [CrossRef]
- Chan, K.L. Biomass Burning Sources and Their Contributions to the Local Air Quality in Hong Kong. Sci. Total Environ. 2017, 596–597, 212–221. [Google Scholar] [CrossRef]
- Fu, Y.; Li, R.; Wang, X.; Bergeron, Y.; Valeria, O.; Chavardès, R.D.; Wang, Y.; Hu, J. Fire Detection and Fire Radiative Power in Forests and Low-Biomass Lands in Northeast Asia: MODIS versus VIIRS Fire Products. Remote Sens. 2020, 12, 2870. [Google Scholar] [CrossRef]
- Huang, X.; Li, M.; Li, J.; Song, Y. A High-Resolution Emission Inventory of Crop Burning in Fields in China Based on MODIS Thermal Anomalies/Fire Products. Atmos. Environ. 2012, 50, 9–15. [Google Scholar] [CrossRef]
- Li, J.; Bo, Y.; Xie, S. Estimating Emissions from Crop Residue Open Burning in China Based on Statistics and MODIS Fire Products. J. Environ. Sci. 2016, 44, 158–170. [Google Scholar] [CrossRef]
- Qiu, X.; Duan, L.; Chai, F.; Wang, S.; Yu, Q.; Wang, S. Deriving High-Resolution Emission Inventory of Open Biomass Burning in China Based on Satellite Observations. Environ. Sci. Technol. 2016, 50, 11779–11786. [Google Scholar] [CrossRef]
Products | Names | Temporal | Spatial Resolution |
---|---|---|---|
Satellite data | MOD14A1 | 2004–2023 | 1 km |
MCD12Q1 | 2004–2022 | 500 m | |
CAL_LID_L2_05kmAPro | 2013–2023 | 30 m | |
OMAEROe | 2013–2023 | 0.25° | |
OMDOAO3e | 2013–2023 | 0.25° | |
MOP03JM | 2013–2023 | 1° | |
OMSO2e | 2013–2023 | 0.25° | |
Reanalysis data | CAMS global greenhouse gas reanalysis (EGG4) monthly averaged fields | 2013–2020 | 0.75° |
ERA5-Land monthly averaged data from 1950 to present | 2004–2023 | 0.1° | |
ERA5 monthly averaged data on single levels from 1940 to present | 2004–2023 | 0.25° |
Category | Season | Region | Forest | Cropland | Urban | Others | ||||
---|---|---|---|---|---|---|---|---|---|---|
Value | % | Value | % | Value | % | Value | % | |||
FPC | Spring | LN | 182 | 15.3 | 772 | 64.7 | 212 | 17.8 | 26 | 2.2 |
JL | 539 | 18.2 | 2361 | 79.6 | 57 | 1.9 | 10 | 0.3 | ||
HLJ | 1950 | 22.4 | 6511 | 74.7 | 162 | 1.9 | 99 | 1.1 | ||
Total | 2671 | 20.7 | 9644 | 74.9 | 432 | 3.4 | 135 | 1.0 | ||
Summer | LN | 56 | 11.5 | 189 | 38.8 | 226 | 46.5 | 16 | 3.2 | |
JL | 68 | 42.4 | 79 | 49.5 | 13 | 8.1 | 0 | 0.0 | ||
HLJ | 360 | 36.1 | 548 | 55.0 | 78 | 7.8 | 10 | 1.0 | ||
Total | 483 | 29.4 | 816 | 49.7 | 317 | 19.3 | 26 | 1.6 | ||
Autumn | LN | 64 | 6.3 | 700 | 68.4 | 248 | 24.3 | 11 | 1.0 | |
JL | 203 | 14.3 | 1186 | 83.5 | 25 | 1.8 | 5 | 0.4 | ||
HLJ | 1938 | 32.7 | 3867 | 65.2 | 83 | 1.4 | 38 | 0.6 | ||
Total | 2206 | 26.4 | 5753 | 68.7 | 357 | 4.3 | 54 | 0.6 | ||
Winter | LN | 48 | 10.4 | 342 | 74.1 | 51 | 11.0 | 21 | 4.5 | |
JL | 28 | 18.1 | 126 | 80.7 | 1 | 0.7 | 1 | 0.4 | ||
HLJ | 74 | 22.0 | 256 | 76.4 | 3 | 0.7 | 3 | 0.9 | ||
Total | 150 | 15.7 | 724 | 76.0 | 55 | 5.7 | 24 | 2.6 | ||
Total | LN | 351 | 11.1 | 2004 | 63.3 | 738 | 23.3 | 73 | 2.3 | |
JL | 838 | 17.8 | 3752 | 79.8 | 97 | 2.1 | 16 | 0.3 | ||
HLJ | 4321 | 27.0 | 11,182 | 70.0 | 326 | 2.0 | 149 | 0.9 | ||
Total | 5511 | 23.1 | 16,938 | 71.0 | 1160 | 4.9 | 238 | 1.0 | ||
FRP () | Spring | LN | 5.3 | 22.3 | 14.7 | 62.3 | 3.0 | 12.7 | 0.6 | 2.7 |
JL | 12.2 | 18.1 | 54.0 | 80.0 | 1.2 | 1.7 | 0.1 | 0.2 | ||
HLJ | 78.0 | 31.6 | 162.4 | 65.7 | 3.3 | 1.3 | 3.3 | 1.3 | ||
Total | 95.5 | 28.2 | 231.1 | 68.4 | 7.5 | 2.2 | 4.0 | 1.2 | ||
Summer | LN | 0.7 | 12.3 | 2.1 | 35.2 | 2.9 | 48.2 | 0.3 | 4.4 | |
JL | 0.8 | 47.6 | 0.8 | 45.2 | 0.1 | 7.2 | 0.0 | 0.0 | ||
HLJ | 7.7 | 44.9 | 8.3 | 48.6 | 0.9 | 5.4 | 0.2 | 1.0 | ||
Total | 9.2 | 37.2 | 11.2 | 45.1 | 3.9 | 15.9 | 0.4 | 1.8 | ||
Autumn | LN | 1.0 | 6.5 | 10.9 | 70.6 | 3.4 | 21.7 | 0.2 | 1.1 | |
JL | 3.0 | 13.7 | 18.5 | 84.6 | 0.3 | 1.4 | 0.1 | 0.3 | ||
HLJ | 90.1 | 49.9 | 87.8 | 48.7 | 1.3 | 0.7 | 1.2 | 0.7 | ||
Total | 94.1 | 43.2 | 117.2 | 53.8 | 4.9 | 2.3 | 1.5 | 0.7 | ||
Winter | LN | 1.9 | 13.7 | 9.8 | 71.1 | 1.0 | 7.2 | 1.1 | 8.0 | |
JL | 0.6 | 19.1 | 2.6 | 80.0 | 0.0 | 0.5 | 0.0 | 0.5 | ||
HLJ | 2.1 | 21.9 | 7.2 | 76.7 | 0.0 | 0.4 | 0.1 | 1.0 | ||
Total | 4.6 | 17.3 | 19.7 | 74.2 | 1.0 | 3.9 | 1.2 | 4.6 | ||
Total | LN | 8.9 | 15.1 | 37.5 | 63.8 | 10.2 | 17.4 | 2.2 | 3.7 | |
JL | 16.6 | 17.6 | 75.9 | 80.5 | 1.6 | 1.7 | 0.2 | 0.2 | ||
HLJ | 177.9 | 39.2 | 265.7 | 58.5 | 5.5 | 1.2 | 4.8 | 1.1 | ||
Total | 203.4 | 33.5 | 379.1 | 62.4 | 17.4 | 2.9 | 7.2 | 1.2 |
Stations | Longitude (°E) | Latitude (°N) | PM2.5 | PM10 | CO |
---|---|---|---|---|---|
1760A | 123.71 | 41.84 | 0.46 | 0.34 | 0.32 |
2213A | 123.17 | 41.25 | 0.79 | 0.85 | 0.92 |
2219A | 123.72 | 42.22 | 0.16 | 0.23 | 0.30 |
2235A | 122.79 | 45.61 | 0.76 | 0.68 | 0.29 |
1130A | 126.56 | 45.82 | 0.47 | 0.38 | 0.42 |
1780A | 123.95 | 47.34 | 0.34 | 0.48 | 0.27 |
1781A | 123.95 | 47.32 | 0.18 | 0.05 | 0.48 |
1788A | 129.64 | 44.55 | 0.35 | 0.24 | 0.67 |
2258A | 130.36 | 46.80 | 0.36 | 0.07 | 0.47 |
2263A | 127.48 | 50.25 | 0.46 | 0.56 | 0.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Jin, Y.; Sun, W.; Gao, Y.; Sun, P.; Ding, W. Biomass Burning in Northeast China over Two Decades: Temporal Trends and Geographic Patterns. Remote Sens. 2024, 16, 1911. https://doi.org/10.3390/rs16111911
Huang H, Jin Y, Sun W, Gao Y, Sun P, Ding W. Biomass Burning in Northeast China over Two Decades: Temporal Trends and Geographic Patterns. Remote Sensing. 2024; 16(11):1911. https://doi.org/10.3390/rs16111911
Chicago/Turabian StyleHuang, Heng, Yinbao Jin, Wei Sun, Yang Gao, Peilun Sun, and Wei Ding. 2024. "Biomass Burning in Northeast China over Two Decades: Temporal Trends and Geographic Patterns" Remote Sensing 16, no. 11: 1911. https://doi.org/10.3390/rs16111911
APA StyleHuang, H., Jin, Y., Sun, W., Gao, Y., Sun, P., & Ding, W. (2024). Biomass Burning in Northeast China over Two Decades: Temporal Trends and Geographic Patterns. Remote Sensing, 16(11), 1911. https://doi.org/10.3390/rs16111911