Long-Range Transport of a Dust Event and Impact on Marine Chlorophyll-a Concentration in April 2023
Abstract
:1. Introduction
2. Materials and Methods
2.1. EOSDIS Worldview Images
2.2. AD-Net Data
2.3. Himawari-8/9 Satellite Data
2.4. CAMS Global Atmospheric Composition Forecasts Data
2.5. ERA5 Data
2.6. PM10 Concentration Data
3. Results
3.1. Analysis of Synoptic Situation and Long-Range Transport of Dust
3.2. Analysis of Ground Station Observations
3.3. The Response of Ocean to Dust Deposition
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francis, D.; Chaboureau, J.-P.; Nelli, N.; Cuesta, J.; Alshamsi, N.; Temimi, M.; Pauluis, O.; Xue, L. Summertime Dust Storms over the Arabian Peninsula and Impacts on Radiation, Circulation, Cloud Development and Rain. Atmos. Res. 2021, 250, 105364. [Google Scholar] [CrossRef]
- Kok, J.F.; Storelvmo, T.; Karydis, V.A.; Adebiyi, A.A.; Mahowald, N.M.; Evan, A.T.; He, C.; Leung, D.M. Mineral Dust Aerosol Impacts on Global Climate and Climate Change. Nat. Rev. Earth Environ. 2023, 4, 71–86. [Google Scholar] [CrossRef]
- Wang, W.; Huang, J.; Zhou, T.; Bi, J.; Lin, L.; Chen, Y.; Huang, Z.; Su, J. Estimation of Radiative Effect of a Heavy Dust Storm over Northwest China Using Fu–Liou Model and Ground Measurements. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 114–126. [Google Scholar] [CrossRef]
- Hu, Z.; Jin, Q.; Ma, Y.; Pu, B.; Ji, Z.; Wang, Y.; Dong, W. Temporal Evolution of Aerosols and Their Extreme Events in Polluted Asian Regions during Terra’s 20-Year Observations. Remote Sens. Environ. 2021, 263, 112541. [Google Scholar] [CrossRef]
- Huang, J.; Wang, T.; Wang, W.; Li, Z.; Yan, H. Climate Effects of Dust Aerosols over East Asian Arid and Semiarid Regions. J. Geophys. Res. Atmos. 2014, 119, 11398–11416. [Google Scholar] [CrossRef]
- Wang, W.; Huang, J.; Minnis, P.; Hu, Y.; Li, J.; Huang, Z.; Ayers, J.K.; Wang, T. Dusty Cloud Properties and Radiative Forcing over Dust Source and Downwind Regions Derived from A-Train Data during the Pacific Dust Experiment. J. Geophys. Res. Atmos. 2010, 115, D00H35. [Google Scholar] [CrossRef]
- Wang, W.; Sheng, L.; Jin, H.; Han, Y. Dust Aerosol Effects on Cirrus and Altocumulus Clouds in Northwest China. J. Meteorol. Res. 2015, 29, 793–805. [Google Scholar] [CrossRef]
- Lachatre, M.; Foret, G.; Laurent, B.; Siour, G.; Cuesta, J.; Dufour, G.; Meng, F.; Tang, W.; Zhang, Q.; Beekmann, M. Air Quality Degradation by Mineral Dust over Beijing, Chengdu and Shanghai Chinese Megacities. Atmosphere 2020, 11, 708. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Yin, Z.-Y. The Impacts of Taklimakan Dust Events on Chinese Urban Air Quality in 2015. Atmosphere 2018, 9, 281. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, W.; Hao, T.; Qu, W.; Sheng, L.; Luo, C.; An, X.; Zhou, Y. The Autumn Haze-Fog Episode Enhanced by the Transport of Dust Aerosols in the Tianjin Area. Atmos. Environ. 2020, 237, 117669. [Google Scholar] [CrossRef]
- Goudie, A.S. Desert Dust and Human Health Disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, L.; Tong, D.Q.; Wu, G.; Dan, M.; Teng, B. A Systematic Review of Global Desert Dust and Associated Human Health Effects. Atmosphere 2016, 7, 158. [Google Scholar] [CrossRef]
- Luo, C.; Wang, W.; Sheng, L.; Zhou, Y.; Hu, Z.; Qu, W.; Li, X.; Hai, S. Influence of Polluted Dust on Chlorophyll-a Concentration and Particulate Organic Carbon in the Subarctic North Pacific Ocean Based on Satellite Observation and the WRF-Chem Simulation. Atmos. Res. 2020, 236, 104812. [Google Scholar] [CrossRef]
- Wang, W.; He, Z.; Hai, S.; Sheng, L.; Han, Y.; Zhou, Y. Dust Aerosol’s Deposition and Its Effects on Chlorophyll-A Concentrations Based on Multi-Sensor Satellite Observations and Model Simulations: A Case Study. Front. Environ. Sci. 2022, 10, 875365. [Google Scholar] [CrossRef]
- Yoon, J.-E.; Lim, J.-H.; Shim, J.-M.; Kwon, J.-I.; Kim, I.-N. Spring 2018 Asian Dust Events: Sources, Transportation, and Potential Biogeochemical Implications. Atmosphere 2019, 10, 276. [Google Scholar] [CrossRef]
- Zhang, T.; Zheng, M.; Sun, X.; Chen, H.; Wang, Y.; Fan, X.; Pan, Y.; Quan, J.; Liu, J.; Wang, Y.; et al. Environmental Impacts of Three Asian Dust Events in the Northern China and the Northwestern Pacific in Spring 2021. Sci. Total Environ. 2023, 859, 160230. [Google Scholar] [CrossRef] [PubMed]
- Kok, J.F.; Adebiyi, A.A.; Albani, S.; Balkanski, Y.; Checa-Garcia, R.; Chin, M.; Colarco, P.R.; Hamilton, D.S.; Huang, Y.; Ito, A.; et al. Contribution of the World’s Main Dust Source Regions to the Global Cycle of Desert Dust. Atmos. Chem. Phys. 2021, 21, 8169–8193. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Bi, J.; Jin, Q.; Qian, Y.; Leung, L.R.; Feng, T.; Chen, S.; Ma, J. Modeling the Contributions of Northern Hemisphere Dust Sources to Dust Outflow from East Asia. Atmos. Environ. 2019, 202, 234–243. [Google Scholar] [CrossRef]
- Wang, W.; Fang, Z. Numerical Simulation and Synoptic Analysis of Dust Emission and Transport in East Asia. Glob. Planet. Change 2006, 52, 57–70. [Google Scholar] [CrossRef]
- Yang, L.; Hu, Z.; Huang, Z.; Wang, L.; Han, W.; Yang, Y.; Tao, H.; Wang, J. Detection of a Dust Storm in 2020 by a Multi-Observation Platform over the Northwest China. Remote Sens. 2021, 13, 1056. [Google Scholar] [CrossRef]
- Li, J.; Hao, X.; Liao, H.; Yue, X.; Li, H.; Long, X.; Li, N. Predominant Type of Dust Storms That Influences Air Quality over Northern China and Future Projections. Earths Future 2022, 10, e2022EF002649. [Google Scholar] [CrossRef]
- Hu, Z.; Ma, Y.; Jin, Q.; Idrissa, N.F.; Huang, J.; Dong, W. Attribution of the March 2021 Exceptional Dust Storm in North China. Bull. Am. Meteorol. Soc 2023, 104, E749–E755. [Google Scholar] [CrossRef]
- Wu, D.; Liu, J.; Wang, T.; Niu, X.; Chen, Z.; Wang, D.; Zhang, X.; Ji, M.; Wang, X.; Pu, W. Applying a Dust Index over North China and Evaluating the Contribution of Potential Factors to Its Distribution. Atmos. Res. 2021, 254, 105515. [Google Scholar] [CrossRef]
- Chen, J.; Li, G. Geochemical Studies on the Source Region of Asian Dust. Sci. China Earth Sci. 2011, 54, 1279–1301. [Google Scholar] [CrossRef]
- Zhang, K.; Chai, F.; Zhang, R.; Xue, Z. Source, Route and Effect of Asian Sand Dust on Environment and the Oceans. Particuology 2010, 8, 319–324. [Google Scholar] [CrossRef]
- Hu, Z.; Huang, J.; Zhao, C.; Ma, Y.; Jin, Q.; Qian, Y.; Leung, L.R.; Bi, J.; Ma, J. Trans-Pacific Transport and Evolution of Aerosols: Spatiotemporal Characteristics and Source Contributions. Atmos. Chem. Phys. 2019, 19, 12709–12730. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, C.; Huang, J.; Leung, L.R.; Qian, Y.; Yu, H.; Huang, L.; Kalashnikova, O.V. Trans-Pacific Transport and Evolution of Aerosols: Evaluation of Quasi-Global WRF-Chem Simulation with Multiple Observations. Geosci. Model Dev. 2016, 9, 1725–1746. [Google Scholar] [CrossRef]
- Zhang, X.; Gong, S.; Zhao, T.; Arimoto, R.; Wang, Y.; Zhou, Z. Sources of Asian Dust and Role of Climate Change versus Desertification in Asian Dust Emission. Geophys. Res. Lett. 2003, 30, 2272. [Google Scholar] [CrossRef]
- Liu, B.; Peng, W.; Liu, S.; Yang, T. Estimation on the Dust Lift Amount and Source Contribution of the Heavy Dust Weather in Mid-March 2021 over Central East Asia. J. Desert Res. 2022, 42, 79–86. [Google Scholar]
- Zhang, K.; Gao, H. The Characteristics of Asian-Dust Storms during 2000–2002: From the Source to the Sea. Atmos. Environ. 2007, 41, 9136–9145. [Google Scholar] [CrossRef]
- Kim, H.-S.; Chung, Y.-S.; Yoon, M.-B. An Analysis on the Impact of Large-Scale Transports of Dust Pollution on Air Quality in East Asia as Observed in Central Korea in 2014. Air Qual. Atmos. Health 2016, 9, 83–93. [Google Scholar] [CrossRef]
- Gao, Z.; Hu, X.; Zhang, X.; Wang, Y. Characteristic Analysis of Three Sand-Dust Storm Process in 2021 Based on FY-4A Satellite Remote Sensing Data. Meteorol. Sci. Technol. 2022, 50, 536–544. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Yao, H.; Lian, Q.; Xu, J. Analysis of the Severe Dust Process and Its Impact on Air Quality in Northern China. Atmosphere 2023, 14, 1071. [Google Scholar] [CrossRef]
- Fan, S.-M.; Moxim, W.J.; Levy II, H. Aeolian Input of Bioavailable Iron to the Ocean. Geophys. Res. Lett. 2006, 33, L07602. [Google Scholar] [CrossRef]
- Ito, A.; Myriokefalitakis, S.; Kanakidou, M.; Mahowald, N.M.; Scanza, R.A.; Hamilton, D.S.; Baker, A.R.; Jickells, T.; Sarin, M.; Bikkina, S.; et al. Pyrogenic Iron: The Missing Link to High Iron Solubility in Aerosols. Sci. Adv. 2019, 5, eaau7671. [Google Scholar] [CrossRef] [PubMed]
- Sunda, W.G.; Huntsman, S.A. Interrelated Influence of Iron, Light and Cell Size on Marine Phytoplankton Growth. Nature 1997, 390, 389–392. [Google Scholar] [CrossRef]
- Schulz, M.; Prospero, J.M.; Baker, A.R.; Dentener, F.; Ickes, L.; Liss, P.S.; Mahowald, N.M.; Nickovic, S.; García-Pando, C.P.; Rodríguez, S.; et al. Atmospheric Transport and Deposition of Mineral Dust to the Ocean: Implications for Research Needs. Environ. Sci. Technol. 2012, 46, 10390–10404. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Luo, C.; Sheng, L.; Zhao, C.; Zhou, Y.; Chen, Y. Effects of Biomass Burning on Chlorophyll-a Concentration and Particulate Organic Carbon in the Subarctic North Pacific Ocean Based on Satellite Observations and WRF-Chem Model Simulations: A Case Study. Atmos. Res. 2021, 254, 105526. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Sun, Y.; An, Z. Water-Soluble Part of the Aerosol in the Dust Storm Season—Evidence of the Mixing between Mineral and Pollution Aerosols. Atmos. Environ. 2005, 39, 7020–7029. [Google Scholar] [CrossRef]
- Huang, K.; Zhuang, G.; Li, J.; Wang, Q.; Sun, Y.; Lin, Y.; Fu, J.S. Mixing of Asian Dust with Pollution Aerosol and the Transformation of Aerosol Components during the Dust Storm over China in Spring 2007. J. Geophys. Res. Atmos. 2010, 115, D00K13. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Wang, Y.; Zhao, X.; Li, J.; Wang, Z.; An, Z. Chemical Composition of Dust Storms in Beijing and Implications for the Mixing of Mineral Aerosol with Pollution Aerosol on the Pathway. J. Geophys. Res. Atmos. 2005, 110, D24209. [Google Scholar] [CrossRef]
- Zhao, X.; Zhuang, G.; Wang, Z.; Sun, Y.; Wang, Y.; Yuan, H. Variation of Sources and Mixing Mechanism of Mineral Dust with Pollution Aerosol—Revealed by the Two Peaks of a Super Dust Storm in Beijing. Atmos. Res. 2007, 84, 265–279. [Google Scholar] [CrossRef]
- Onishi, K.; Kurosaki, Y.; Otani, S.; Yoshida, A.; Sugimoto, N.; Kurozawa, Y. Atmospheric Transport Route Determines Components of Asian Dust and Health Effects in Japan. Atmos. Environ. 2012, 49, 94–102. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, D.; Huang, J.; He, J.; Chen, Y.; Chen, J.; Bi, H.; Lou, G.; Du, S.; Zhang, Y.; et al. Mongolia Contributed More than 42% of the Dust Concentrations in Northern China in March and April 2023. Adv. Atmos. Sci. 2023, 40, 1549–1557. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Yan, H. An Analysis of Air Pollution Associated with the 2023 Sand and Dust Storms over China: Aerosol Properties and PM10 Variability. Geosci. Front. 2024, 15, 101762. [Google Scholar] [CrossRef]
- Yin, Z.; Huo, Q.; Ma, X.; Zhang, Y.; Ma, X.; Wang, H. Mechanisms of Dust Source Accumulation and Synoptic Disturbance Triggering the 2023 Spring Sandstorm in Northern China. Trans. Atmos. Sci. 2023, 46, 321–331. [Google Scholar]
- Chahine, M.T.; Pagano, T.S.; Aumann, H.H.; Atlas, R.; Barnet, C.; Blaisdell, J.; Chen, L.; Divakarla, M.; Fetzer, E.J.; Goldberg, M.; et al. AIRS: Improving Weather Forecasting and Providing New Data on Greenhouse Gases. Bull. Am. Meteorol. Soc. 2006, 87, 911–926. [Google Scholar] [CrossRef]
- Sugimoto, N.; Matsui, I.; Shimizu, A.; Nishizawa, T.; Hara, Y.; Uno, I. Lidar Network Observation of Tropospheric Aerosols. In Proceedings of the Lidar Remote Sensing for Environmental Monitoring XI, Incheon, Republic of Korea, 12–14 October 2010; SPIE: Bellingham, WA, USA; Volume 7860, pp. 87–95. [Google Scholar]
- Liu, Z.; Zhang, X.; Zheng, Y.; Liu, J. Spatio-Temporal Distribution and Transport Behavior of a Dust Event Based on the CALIPSO in China. Acta Sci. Circumstantiae 2016, 36, 4315–4327. [Google Scholar]
- Yin, L.; He, Q.; Li, J.; Meng, L.; Fu, G.; Wu, C.; Xiao, H.; Fan, X. Observation and Study of a Sand and Dust Pollution Process in Hotan City Based on Ground-Based Lidar. China Environ. Sci. 2023, 12, 6290–6300. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS Reanalysis of Atmospheric Composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Flemming, J.; Huijnen, V.; Arteta, J.; Bechtold, P.; Beljaars, A.; Blechschmidt, A.-M.; Diamantakis, M.; Engelen, R.J.; Gaudel, A.; Inness, A.; et al. Tropospheric Chemistry in the Integrated Forecasting System of ECMWF. Geosci. Model Dev. 2015, 8, 975–1003. [Google Scholar] [CrossRef]
- Isaza, A.; Kay, M.; Evans, J.P.; Bremner, S.; Prasad, A. Validation of Australian Atmospheric Aerosols from Reanalysis Data and CMIP6 Simulations. Atmos. Res. 2021, 264, 105856. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Xue, H.; Liu, G.; Zhang, H.; Hu, R.; Wang, X. Similarities and Differences in PM10 and PM2.5 Concentrations, Chemical Compositions and Sources in Hefei City, China. Chemosphere 2019, 220, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Guan, Q.; Lin, J.; Luo, H.; Yang, L.; Tan, Z.; Wang, Q.; Wang, N.; Tian, J. Spatiotemporal Variations and Driving Factors of Dust Storm Events in Northern China Based on High-Temporal-Resolution Analysis of Meteorological Data (1960–2007). Environ. Pollut. 2020, 260, 114084. [Google Scholar] [CrossRef] [PubMed]
- Tsai, F.; Chen, G.T.-J.; Liu, T.-H.; Lin, W.-D.; Tu, J.-Y. Characterizing the Transport Pathways of Asian Dust. J. Geophys. Res. Atmos. 2008, 113, D17311. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Zhou, Y.; Ma, Y.; Zhang, D.; Sheng, L. Occurrence and Reverse Transport of Severe Dust Storms Associated with Synoptic Weather in East Asia. Atmosphere 2019, 10, 4. [Google Scholar] [CrossRef]
- Filonchyk, M. Characteristics of the Severe March 2021 Gobi Desert Dust Storm and Its Impact on Air Pollution in China. Chemosphere 2022, 287, 132219. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Song, J.; Li, X.; Li, N.; Yuan, H. Dissolved Inorganic Carbon in Surface Waters around the Changjiang Estuary and Hangzhou Bay in Summer. Mar. Sci. 2008, 32, 61–67. [Google Scholar]
- Guo, J.; Xu, H.; Liu, L.; Chen, D.; Peng, Y.; Yim, S.H.-L.; Yang, Y.; Li, J.; Zhao, C.; Zhai, P. The Trend Reversal of Dust Aerosol over East Asia and the North Pacific Ocean Attributed to Large-Scale Meteorology, Deposition, and Soil Moisture. J. Geophys. Res. Atmos. 2019, 124, 10450–10466. [Google Scholar] [CrossRef]
- Hamilton, D.S.; Perron, M.M.G.; Bond, T.C.; Bowie, A.R.; Buchholz, R.R.; Guieu, C.; Ito, A.; Maenhaut, W.; Myriokefalitakis, S.; Olgun, N.; et al. Earth, Wind, Fire, and Pollution: Aerosol Nutrient Sources and Impacts on Ocean Biogeochemistry. Annu. Rev. Mar. Sci. 2022, 14, 303–330. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, W.; Dumont, E.; Meybeck, M.; Heussner, S. River Discharges of Water and Nutrients to the Mediterranean and Black Sea: Major Drivers for Ecosystem Changes during Past and Future Decades? Prog. Oceanogr. 2009, 80, 199–217. [Google Scholar] [CrossRef]
- Ito, A.; Shi, Z. Delivery of Anthropogenic Bioavailable Iron from Mineral Dust and Combustion Aerosols to the Ocean. Atmos. Chem. Phys. 2016, 16, 85–99. [Google Scholar] [CrossRef]
- Li, Y.; Wang, W.; Han, Y.; Liu, W.; Wang, R.; Zhang, R.; Zhao, Z.; Sheng, L.; Zhou, Y. Impact of COVID-19 Emission Reduction on Dust Aerosols and Marine Chlorophyll-a Concentration. Sci. Total Environ. 2024, 918, 170493. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Yin, Y.; Wang, Y.; Kang, H.; Xiao, H.; Chen, K.; Hao, J. Numerical Study of the Dust Distribution, Source and Sink, and Transport Features over East Asia. China Environ. Sci. 2017, 37, 801–812. [Google Scholar]
- Gao, Y.; Fan, S.-M.; Sarmiento, J.L. Aeolian Iron Input to the Ocean through Precipitation Scavenging: A Modeling Perspective and Its Implication for Natural Iron Fertilization in the Ocean. J. Geophys. Res. Atmos. 2003, 108, 4221. [Google Scholar] [CrossRef]
- Jo, C.O.; Lee, J.-Y.; Park, K.-A.; Kim, Y.H.; Kim, K.-R. Asian Dust Initiated Early Spring Bloom in the Northern East/Japan Sea. Geophys. Res. Lett. 2007, 34, L05602. [Google Scholar] [CrossRef]
- Li, W.; Xu, L.; Liu, X.; Zhang, J.; Lin, Y.; Yao, X.; Gao, H.; Zhang, D.; Chen, J.; Wang, W.; et al. Air Pollution–Aerosol Interactions Produce More Bioavailable Iron for Ocean Ecosystems. Sci. Adv. 2017, 3, e1601749. [Google Scholar] [CrossRef] [PubMed]
- Meskhidze, N.; Chameides, W.L.; Nenes, A.; Chen, G. Iron Mobilization in Mineral Dust: Can Anthropogenic SO2 Emissions Affect Ocean Productivity? Geophys. Res. Lett. 2003, 30, 2085. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Xia, D.; Yin, D.; He, J.; Liu, N.; Li, F. Urban Particle Size Distributions during Two Contrasting Dust Events Originating from Taklimakan and Gobi Deserts. Environ. Pollut. 2015, 207, 107–122. [Google Scholar] [CrossRef]
Citations | Time Period of Dust Events | Study Area | Chl-a Concentration (Maximum) | Maximum Increase Ratio of Chl-a Concentration b |
---|---|---|---|---|
Luo et al. [13] | 12–17 March 2015 | 40°N–50°N, 150°E–155°E | 0.48 mg/m3 | 54.8% |
Wang et al. [14] | 21–25 May 2019 | 45°N–50°N, 145°E–150°E | 1.54 mg/m3 | 256% |
Yoon et al. [15] | Dust event 1: 26–31 March 2018 Dust event 2: 1–4 April 2018 | 45°N–46°N, 151°E–152°E | 3.8 mg/m3 | 1166.6% |
Zhang et al. [16] | 27–30 March 2021 | 30°N–50°N, 120°E–128°E | ~1.4 a mg/m3 | 69% |
Li et al. [66] | 15–20 March 2019 | 40°N–45°N, 157°E–162°E | 0.28 mg/m3 | 85% |
Dust event in this study | 9–13 April 2023 | 37°N–42°N, 145°E–165°E | 2.78 mg/m3 | 692% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, W. Long-Range Transport of a Dust Event and Impact on Marine Chlorophyll-a Concentration in April 2023. Remote Sens. 2024, 16, 1883. https://doi.org/10.3390/rs16111883
Li Y, Wang W. Long-Range Transport of a Dust Event and Impact on Marine Chlorophyll-a Concentration in April 2023. Remote Sensing. 2024; 16(11):1883. https://doi.org/10.3390/rs16111883
Chicago/Turabian StyleLi, Yundan, and Wencai Wang. 2024. "Long-Range Transport of a Dust Event and Impact on Marine Chlorophyll-a Concentration in April 2023" Remote Sensing 16, no. 11: 1883. https://doi.org/10.3390/rs16111883
APA StyleLi, Y., & Wang, W. (2024). Long-Range Transport of a Dust Event and Impact on Marine Chlorophyll-a Concentration in April 2023. Remote Sensing, 16(11), 1883. https://doi.org/10.3390/rs16111883