Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Water Sampling
2.3. Chemical and Physical Parameters
2.4. Remote Sensing Detection
3. Results
3.1. Chlorophyll-a Field Values
3.2. Remote Sensing Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kumar, N.; Yamaç, S.S.; Velmurugan, A. Applications of remote sensing and GIS in natural resource management. J. Andaman Sci. Assoc. 2015, 20, 1–6. [Google Scholar]
- Corbane, C.; Lang, S.; Pipkins, K.; Alleaume, S.; Deshayes, M.; Millán, V.E.G.; Strasser, T.; Borre, J.V.; Toon, S.; Michael, F. Remote sensing for mapping natural habitats and their conservation status—New opportunities and challenges. Int. J. Appl. Earth Obs. Geoinf. 2015, 37, 7–16. [Google Scholar] [CrossRef]
- Cabello, J.; Fernández, N.; Alcaraz-Segura, D.; Oyonarte, C.; Piñeiro, G.; Altesor, A.; Delibes, M.; Paruelo, J. The ecosystem functioning dimension in conservation: Insights from remote sensing. Biodivers. Conserv. 2012, 21, 3287–3305. [Google Scholar] [CrossRef]
- Khorasani, H.; Kerachian, R.; Malakpour-Estalaki, S. Developing a comprehensive framework for eutrophication management in off-stream artificial lakes. J. Hydrol. 2018, 562, 103–124. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Shi, T.; Hu, S.; Wu, G.; Zhou, Q. Application of Sentinel 2 MSI images to retrieve suspended particulate matter concentrations in Poyang Lake. Remote Sens. 2017, 9, 761. [Google Scholar] [CrossRef]
- Pahlevan, N.; Sarkar, S.; Franz, B.; Balasubramanian, S.V.; He, J. Sentinel-2 MultiSpectral Instrument (MSI) data processing for aquatic science applications: Demonstrations and validations. Remote Sens. Environ. 2017, 201, 47–56. [Google Scholar] [CrossRef]
- Toming, K.; Kutser, T.; Laas, A.; Sepp, M.; Paavel, B.; Nõges, T. First Experiences in Mapping Lake Water Quality Parameters with Sentinel-2 MSI Imagery. Remote Sens. 2016, 8, 640. [Google Scholar] [CrossRef]
- Zhao, D.; Xing, X.; Liu, Y.; Yang, J.; Wang, L. The Relation of Chlorophyll- a Concentration with the Reflectance Peak near 700 Nm in Algae-Dominated Waters and Sensitivity of Fluorescence Algorithms for Detecting Algal Bloom. Int. J. Remote Sens. 2010, 31, 39–48. [Google Scholar] [CrossRef]
- Kolokoussis, P.; Karathanassi, V. Oil Spill Detection and Mapping Using Sentinel 2 Imagery. J. Mar. Sci. Eng. 2018, 6, 4. [Google Scholar] [CrossRef]
- Laneve, G.; Bruno, M.; Mukherjee, A.; Messineo, V.; Giuseppetti, R.; De Pace, R.; Magurano, F.; D’Ugo, E. Remote sensing detection of algal blooms in a lake impacted by petroleum hydrocarbons. Remote Sens. 2022, 14, 121. [Google Scholar] [CrossRef]
- Bulgarelli, B.; Djavidnia, S. On MODIS retrieval of oil spill spectral properties in the marine environment. IEEE Geosci. Remote Sens. Lett. 2012, 9, 398–402. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf. Opt. Express 2014, 22, 13755. [Google Scholar] [CrossRef] [PubMed]
- Luciani, R.; Laneve, G. Oil Spill Detection Using Optical Sensors: A Multi-Temporal Approach. Satell. Oceanogr. Meteorol. 2018, 3. [Google Scholar] [CrossRef]
- Harvey, E.T.; Kratzer, S.; Philipson, P. Satellite-based water quality monitoring for improved spatial and temporal retrieval of chlorophyll-a in coastal waters. Remote Sens. Environ. 2015, 158, 417–430. [Google Scholar] [CrossRef]
- Chen, S.; Meng, Y.; Lin, S.; Xi, J. Remote Sensing of the Seasonal and Interannual Variability of Surface Chlorophyll-a Concentration in the Northwest Pacific over the Past 23 Years (1997–2020). Remote Sens. 2022, 14, 5611. [Google Scholar] [CrossRef]
- Marcelli, M.; Piermattei, V.; Madonia, A.; Mainardi, U. Design and application of new low-cost instruments for marine environmental research. Sensors 2014, 14, 23348–23364. [Google Scholar] [CrossRef] [PubMed]
- Karetnikov, S.; Leppäranta, M.; Montonen, A. A time series of over 100 years of ice seasons on Lake Ladoga. J. Great Lakes Res. 2017, 43, 979–988. [Google Scholar] [CrossRef]
- Gbagir, A.-M.G.; Colpaert, A. Assessing the trend of the trophic state of lake Ladoga based on multi-year (1997-2019) CMEMS globcolour-merged CHL-OC5 satellite observations. Sensors 2020, 20, 6881. [Google Scholar] [CrossRef]
- Zhai, L.; Cheng, S.; Sang, H.; Xie, W.; Gan, L.; Wang, T. Remote sensing evaluation of ecological restoration engineering effect: A case study of the Yongding River watershed, China. Ecol. Eng. 2022, 182, 106724. [Google Scholar] [CrossRef]
- Bouffard, D.; Kiefer, I.; Wüest, A.; Wunderle, S.; Odermatt, D. Are surface temperature and chlorophyll in a large deep lake related? An analysis based on satellite observations in synergy with hydrodynamic modelling and in-situ data. Remote Sens. Environ. 2018, 209, 510–523. [Google Scholar] [CrossRef]
- Fichot, C.G.; Matsumoto Holt, K.B.; Gierach, M.M.; Tokos, K.S. Assessing change in the overturning trend of the Laurentian Great Lakes using remotely sensed lake surface water temperatures. Remote Sens. Environ. 2019, 235, 111427. [Google Scholar] [CrossRef]
- Yao, F.F.; Wang, J.D.; Wang, C.; Crétaux, J.F. Constructing long-term high-frequency time series of global lake and reservoir areas using Landsat imagery. Remote Sens. Environ. 2019, 232, 111210. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Chen, W.F.; Li, G.; Yang, W.; Yi, S.; Luo, W. Lake water and glacier mass gains in the northwestern Tibetan Plateau observed from multi-sensor remote sensing data: Implication of an enhanced hydrological cycle. Remote Sens. Environ. 2020, 237, 111554. [Google Scholar] [CrossRef]
- Cordell, S.; Questad, E.J.; Asner, G.P.; Kinney, K.M.; Thaxton, J.M.; Uowolo, A.; Brooks, S.; Chynoweth, M.W. Remote sensing for restoration planning: How the big picture can inform stakeholders. Restor. Ecol. 2017, 25, S147–S154. [Google Scholar] [CrossRef]
- Escoto, J.E.; Blanco, A.C.; Argamosa, R.J.; Medina, J.M. Pasig river water quality estimationusing an empirical ordinary least squares regression model of Sentinel 2 satellite images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, 46, 161–168. [Google Scholar] [CrossRef]
- Barbanti, L.; Carollo, A.; Libera, V. Carta batimetrica del Lago di Vico. In Indagini Limnologiche sui Laghi di Bolsena, Bracciano, Vico e Trasimeno; Series Quaderni dell’Istituto di Ricerca Sulle Acque, CNR, Eds.; CNR: Roma, Italia, 1974; Volume 17. [Google Scholar]
- Gelosi, EClassification of the ecological status of volcanic lakes in Central Italy. Available online: https://www.semanticscholar.org/paper/Classification-of-the-ecological-status-of-volcanic-Margaritora-Bazzanti/e663484d5d2546f731628e30e7efbf26f6076444 (accessed on 15 May 2024).
- Dyer, M. The water quality at Lago di Vico during 1992–1993. Sci. Total Environ. 1995, 171, 77–83. [Google Scholar] [CrossRef]
- Franzoi, P.; Scialanca, F.; Castaldelli, G. Lago di Vico (Italia Centrale): Analisi delle principali variabili fisiche e chimiche delle acque in relazione al’evoluzione trofica. Available online: https://www.semanticscholar.org/paper/Lago-di-Vico-(Italia-Centrale)%3A-analisi-delle-e-in-Franzoi-Scialanca/b7f46a07d166cb40ee581eef98c704b84d695aa2 (accessed on 15 May 2024).
- Mazza, R.; Capelli, G.; Teoli, P.; Bruno, M.; Messineo, V.; Melchiorre, S.; Di Corcia, A. Toxin Contamination of Surface and Subsurface Water Bodies Connected with Lake Vicos Watershed (Central Italy). In Drinking Water: Contamination, Toxicity and Treatment; Romero, J.D., Molina, P.S., Eds.; Nova Publishers Inc.: New York, NY, USA, 2008; pp. 1–100. [Google Scholar]
- Bruno, M.; Gallo, P.; Messineo, V.; Melchiorre, S. Health risk associated with microcystin presence in the environment: The case of an Italian Lake (Lake Vico, Central Italy). Int. J. Environ. Prot. 2012, 2, 34–41. [Google Scholar]
- Chondrogianni, C.; Ariztegui, D.; Guilizzoni, P.; Lami, A. Lakes Albano and Nemi (central Italy): An overview. In Palaeoenvironmental Analysis of Italian Crater Lakes and Adriatic Sediments (PALICLAS); Guilizzoni, P., Oldfield, F., Eds.; dell’Istituto Italiano di Idrobiologia: Pallanza, Italy, 1996; Volume 55, pp. 17–22. [Google Scholar]
- Cannicci, G. Su una eccezionale fioritura del Lago di Albano. Boll. Pesca Piscic. Idrobiol. 1953, 8, 221–233. [Google Scholar]
- Utermöhl, H. Neue Wege in der quantitativen Earfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons). Verh. Int. Ver. Theor. Angew. Limnol. 1931, 5, 567–596. [Google Scholar]
- Lund, J.W.G.; Kipling, C.; Le Cren, E. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiology 1958, 11, 143–170. [Google Scholar] [CrossRef]
- Lehmann, M.K.; Gurlin, D.; Pahlevan, N.; Alikas, K.; Conroy, T.; Anstee, J.; Balasubramanian, S.V.; Barbosa, C.C.F.; Binding, C.; Bracher, A.; et al. GLORIA—A Globally Representative Hyperspectral in Situ Dataset for Optical Sensing of Water Quality. Sci. Data 2023, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Group 17, SCOR Working. Determination of Photosynthetic Pigments in Sea-Water. 1966. Available online: https://repository.oceanbestpractices.org/handle/11329/2339 (accessed on 15 May 2024).
- Niroumand-Jadidi, M.; Bovolo, F.; Bresciani, M.; Gege, P.; Giardino, C. Water Quality Retrieval from Landsat-9 (OLI-2) Imagery and Comparison to Sentinel-2. Remote Sens. 2022, 14, 4596. [Google Scholar] [CrossRef]
- Free, G.; Bresciani, M.; Pinardi, M.; Giardino, C.; Alikas, K.; Kangro, K.; Rõõm, E.-I.; Vaičiūtė, D.; Bučas, M.; Tiškus, E.; et al. Detecting Climate Driven Changes in Chlorophyll-a Using High Frequency Monitoring: The Impact of the 2019 European Heatwave in Three Contrasting Aquatic Systems. Sensors 2021, 21, 6242. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Pahlevan, N.; Smith, B.; Schalles, J.; Binding, C.; Cao, Z.; Ma, R.; Alikas, K.; Kangro, K.; Gurlin, D.; Nguyen, H.; et al. Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach. Remote Sens. Environ. 2020, 240, 111604. [Google Scholar] [CrossRef]
- Darmawan, A.; Herawati, E.Y.; Azkiya, M.; Cahyani, R.N.; Aryani, S.H.; Fradaningtyas; Hardiyanti, C.A.; Dwiyanti, R.S.M. Seasonal Monitoring of Chlorophyll-a with Landsat 8 Oli in the Madura Strait, Pasuruan, East Java, Indonesia. Georaphy. Environ. Sustain. 2021, 14, 22–29. [Google Scholar] [CrossRef]
- Meng, H.; Zhang, J.; Zheng, Z. Retrieving Inland Reservoir Water Quality Parameters Using Landsat 8- 9 OLI and Sentinel-2 MSI Sensors with Empirical Multivariate Regression. Int. J. Environ. Res. Public Health 2022, 19, 7725. [Google Scholar] [CrossRef] [PubMed]
- Buma, W.G.; Lee, S.-I. Evaluation of Sentinel-2 and Landsat 8 Images for Estimating Chlorophyll-a Concentrations in Lake Chad, Africa. Remote Sens. 2020, 12, 2437. [Google Scholar] [CrossRef]
- Brenes, G.C.; Alpizar, L.H.; Perez, I.A. Chlorophyll-a Modeling in the Sierpe River with Sentinel-2 and Google Earth Engine. In Proceedings of the 2022 IEEE 4th International Conference on BioInspired Processing (BIP), Cartago, Costa Rica, 15–17 November 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Ha, N.T.T.; Thao, N.T.P.; Koike, K.; Nhuan, M.T. Selecting the Best Band Ratio to Estimate Chlorophyll-a Concentration in a Tropical Freshwater Lake Using Sentinel 2A Images from a Case Study of Lake Ba Be (Northern Vietnam). ISPRS Int. J. Geo-Inf. 2017, 6, 290. [Google Scholar] [CrossRef]
- Moradi, M.; Keivan, K. Spatio-Temporal Variability of Red-Green Chlorophyll-a Index from MODIS Data—Case Study: Chabahar Bay, SE of Iran. Cont. Shelf Res. 2019, 184, 1–9. [Google Scholar] [CrossRef]
- Poddar, S.; Chacko, N.; Swain, D. Estimation of Chlorophyll-a in Northern Coastal Bay of Bengal Using Landsat-8 OLI and Sentinel-2 MSI Sensors. Front. Mar. Sci. 2019, 6, 598. [Google Scholar] [CrossRef]
- Messineo, V.; Mattei, D.; Melchiorre, S.; Salvatore, G.; Bogialli, S.; Salzano, R.; Mazza, R.; Capelli, G.; Bruno, M. Microcystin diversity in a Planktothrix rubescens population from Lake Albano (Central Italy). Toxicon 2006, 48, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Bruno, M.; Messineo, V. Extraction and Quantification of BMAA from Water Samples. In Protocols for Cyanobacteria Sampling and Detection of Cyanotoxin; Thajuddin, N., Sankara Narayanan, A., Dhanasekaran, D., Eds.; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Morel, A.; Maritorena, S. Bio-optical properties of oceanic waters: A reappraisal. J. Geophys. Res. 2001, 106, 7163–7180. [Google Scholar] [CrossRef]
- Knapp, D.; Fernández Castro, B.; Marty, D.; Loher, E.; Köster, O.; Wüest, A.; Posch, T. The Red Harmful Plague in Times of Climate Change: Blooms of the Cyanobacterium Planktothrix rubescens Triggered by Stratification Dynamics and Irradiance. Front. Microbiol. 2021, 25, 705914. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Neil, C.; Spyrakos, E.; Hunter, P.; Tyler, A. A global approach for chlorophyll-a retrieval across optically complex inland waters based on optical water types. Remote Sens. Environ. 2019, 229, 159–178. [Google Scholar] [CrossRef]
- Uudeberg, K.; Ansko, I.; Põru, G.; Ansper, A.; Reinart, A. Using Optical Water Types to Monitor Changes in Optically Complex Inland and Coastal Water. Remote Sens. 2019, 11, 2297. [Google Scholar] [CrossRef]
- Free, G.; Bresciani, M.; Pinardi, M.; Peters, S.; Laanen, M.; Padula, R.; Cingolani, A.; Charavgis, F.; Giardino, C. Shorter Blooms Expected with Longer Warm Periods under Climate Change: An Example from a Shallow Meso-Eutrophic Mediterranean Lake. Hydrobiologia 2022, 849, 3963–3978. [Google Scholar] [CrossRef]
Algorithm | Equation | Reference |
---|---|---|
Jaelani | 0.9889 (red/NIR5) − 0.3619 | [43] |
Empirical (MSI) | NIR5 − (red + NIR6)/2 | [44] |
FLH Violet | green − (red + blue − red) | [45] |
Band Ratio 1 | 1.1116 (NIR5/blue) + 0.7016 | [46] |
Band Ratio 2 | blue/green | [47] |
Band Ratio 3 | red/blue | [47] |
Band Ratio 4 | red/green | [48] |
Lake | Atm. Correction | Sentinel-2 | |||||
---|---|---|---|---|---|---|---|
x | Models | N | Range mg/m3 | R2 | RMSE | ||
Albano | ACOLITE | B/G | −8.7 + (28.9 × x) | 10 | 1–22 | 0.69 | 2.7 |
Sen2cor | B/G | −25.6 + (46.9 × x) | 10 | 1–22 | 0.57 | 3.1 | |
Vico | ACOLITE | Band Ratio 1 | −9.3 + (15.6 × x) | 7 | 1–23 | 0.76 | 3.1 |
Sen2cor | Band Ratio 1 | −26.5 + (29.5 × x) | 8 | 1–23 | 0.76 | 3.12 | |
Bolsena | ACOLITE | Empirical | 3.32 + (-795.5 × x) | 7 | 1–6 | 0.72 | 0.7 |
Sen2cor | R/B | 0.18 + (11.15 × x) | 7 | 1–6 | 0.68 | 0.74 | |
Trasimeno | ACOLITE | Empirical | 1.47 + (1127.7 × x) | 16 | 1–37 | 0.72 | 6.8 |
Sen2cor | Empirical | −0.32 + (1186.2 × x) | 16 | 1–37 | 0.76 | 6.4 |
Lake | Atm. Correction | Landsat | |||||
---|---|---|---|---|---|---|---|
x | Models | N | Range mg/m3 | R2 | RMSE | ||
Albano | ACOLITE | R/G | −26.296 +(68.67 × x) | 10 | 1–11 | 0.86 | 1.2 |
LaSRC/LEDAPS | FLH Violet | 3.45 + (465.008 × x) | 10 | 1–11 | 0.56 | 2.23 | |
Vico | ACOLITE | Jaelani | 1.75 + (8.047 × x) | 14 | 0.8–14.3 | 0.79 | 1.9 |
LaSRC/LEDAPS | Jaelani | 0.681 + (7.45 × x) | 14 | 0.8–14.3 | 0.56 | 2.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laneve, G.; Téllez, A.; Kallikkattil Kuruvila, A.; Bruno, M.; Messineo, V. Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy. Remote Sens. 2024, 16, 1792. https://doi.org/10.3390/rs16101792
Laneve G, Téllez A, Kallikkattil Kuruvila A, Bruno M, Messineo V. Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy. Remote Sensing. 2024; 16(10):1792. https://doi.org/10.3390/rs16101792
Chicago/Turabian StyleLaneve, Giovanni, Alejandro Téllez, Ashish Kallikkattil Kuruvila, Milena Bruno, and Valentina Messineo. 2024. "Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy" Remote Sensing 16, no. 10: 1792. https://doi.org/10.3390/rs16101792
APA StyleLaneve, G., Téllez, A., Kallikkattil Kuruvila, A., Bruno, M., & Messineo, V. (2024). Eutrophication and HAB Occurrence Control in Lakes of Different Origins: A Multi-Source Remote Sensing Detection Strategy. Remote Sensing, 16(10), 1792. https://doi.org/10.3390/rs16101792