Study on the Expansion Potential of Artificial Oases in Xinjiang by Coupling Geomorphic Features and Hierarchical Clustering
Abstract
:1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Datasets
2.2.1. Oasis Dataset
2.2.2. Geomorphological Data Products
2.3. Methods
2.3.1. Construction of Landform–Artificial Oasis Change Index
2.3.2. Methods for Analyzing the Spatial and Temporal Distribution of Artificial Oases
2.3.3. Cluster Analysis
- Calculate the similarity matrix between individual landform–artificial oasis change indices corresponding to several landform types;
- Assume that each landform type is a cluster class;
- Cyclically merge the two clusters with the highest similarity and then update the similarity matrix;
- The loop terminates when the number of cluster classes is 1.
2.3.4. Analysis of the Development Potential of Artificial Oases in Different Landforms
3. Results
3.1. Analysis of Spatial and Temporal Changes in Artificial Oases
3.2. Analysis of Landform–Artificial Oasis Suitability Cluster
3.3. Forecasting the Development Potential of Artificial Oases across the Territory Based on Geomorphological Conditions
4. Discussion
4.1. Impact of Morphogenetic Landforms on Artificial Oasis Change
4.2. Explanation of Clustering Suitability Patterns
4.3. Shortcomings and Prospects
5. Conclusions
- (1)
- From 1990 to 2020, the area of artificial oases throughout the territory continued to increase, with a clear trend of expansion to the south due to the development of artificial oases in the southern border from 2005 to 2010, and the center of gravity of these oases continued to migrate in the northeast direction in the other periods.
- (2)
- With regard to the landform–artificial oasis change index, the hierarchical clustering method based on calculating the average Euclidean distance between groups was used to classify the indicators into groups of change trend indicators, change contribution indicators, and exploitation degree indicators according to their similarity, and six types of landform–artificial oasis development suitability models were created based on the results of the clustering analysis, namely, class I suitability (fluvial alluvial plains), class II suitability (fluvial alluvial plains), high-speed suitability (fluvial alluvial terraces), mature suitability (loess terraces and loess plains), low level of suitability, and marginal suitability. Among them, the proportions of landforms of first- and second-class suitability in the whole territory were 7.39% and 6.15%, respectively.
- (3)
- The optimal scale of analysis during the 30-year development of artificial oases in Xinjiang was 8 km, which could explain more than 96% of the growth changes in artificial oases, and the distribution of landforms of class I and class II suitability within the 8km buffer zone of an artificial oasis accounted for 10.55% and 9.90%, respectively, in 2020, and the landforms of class I suitability for the development of artificial oases were mainly concentrated in the north and south of the urban agglomerations on the northern and southern slopes of the Tianshan Mountains, and urban agglomerations located at the southern edge of the Altai Mountain. The suitability of the landforms in the Tuha Basin was mainly of the second level.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; Wang, Z.; Guo, L.; Zhang, J.; Li, W.; He, H.; Zong, R.; Wang, D.; Jia, Z.; Wen, Y. Experiences and challenges of agricultural development in an artificial oasis: A review. Agric. Syst. 2021, 193, 103220. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, P.; Gu, X.; Deng, M.; Lai, X.; Long, A.; Deng, X. Analysis of Spatio-Temporal Pattern Changes and Driving Forces of Xinjiang Plain Oases Based on Geodetector. Land 2023, 12, 1508. [Google Scholar] [CrossRef]
- Sun, F.; Wang, Y.; Chen, Y.; Li, Y.; Zhang, Q.; Qin, J.; Kayumba, P.M. Historic and Simulated Desert-Oasis Ecotone Changes in the Arid Tarim River Basin, China. Remote Sens. 2021, 13, 647. [Google Scholar] [CrossRef]
- Gao, P.; Kasimu, A.; Zhao, Y.; Lin, B.; Chai, J.; Ruzi, T.; Zhao, H. Evaluation of the Temporal and Spatial Changes of Ecological Quality in the Hami Oasis Based on RSEI. Sustainability 2020, 12, 7716. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Zhang, Q.; Li, Y. Spatial patterns of vegetation carbon sinks and sources under water constraint in Central Asia. J. Hydrol. 2020, 590, 125355. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Change 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, C.; Chen, Y.; Chen, W.; Xiang, Y.; Li, J.; Liu, Y. Recent Oasis Dynamics and Ecological Security in the Tarim River Basin, Central Asia. Sustainability 2022, 14, 3372. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, E.; Zhang, H. Complex network and redundancy analysis of spatial–temporal dynamic changes and driving forces behind changes in oases within the Tarim Basin in northwestern China. Catena 2021, 201, 105216. [Google Scholar] [CrossRef]
- Luo, G.; Feng, Y.; Zhang, B.; Cheng, W. Sustainable land-use patterns for arid lands: A case study in the northern slope areas of the Tianshan Mountains. J. Geogr. Sci. 2010, 20, 510–524. [Google Scholar] [CrossRef]
- Feng, Y.; Luo, G.; Lu, L.; Zhou, D.; Han, Q.; Xu, W.; Yin, C.; Zhu, L.; Dai, L.; Li, Y.; et al. Effects of land use change on landscape pattern of the Manas River watershed in Xinjiang, China. Environ. Earth Sci. 2011, 64, 2067–2077. [Google Scholar] [CrossRef]
- Aspinall, R. Modelling land use change with generalized linear models—A multi-model analysis of change between 1860 and 2000 in Gallatin Valley, Montana. J. Environ. Manag. 2004, 72, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, X.; Lei, J.; Zhu, L. Urban expansion of oasis cities between 1990 and 2007 in Xinjiang, China. Int. J. Sustain. Dev. World Ecol. 2010, 17, 253–262. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, L.; Luo, G.; Yu, Q. Quantifying the contributions of agricultural oasis expansion, management practices and climate change to net primary production and evapotranspiration in croplands in arid northwest China. J. Arid Environ. 2014, 100–101, 31–41. [Google Scholar] [CrossRef]
- Zhang, Q.; Yan, M.; Zhang, L.; Shao, W.; Chen, Y.; Dong, Y. Three Decades of Oasis Transition and Its Driving Factors in Turpan–Hami Basin in Xinjiang, China: A Complex Network Approach. Remote Sens. 2024, 16, 465. [Google Scholar] [CrossRef]
- Lamqadem, A.; Saber, H.; Pradhan, B. Quantitative Assessment of Desertification in an Arid Oasis Using Remote Sensing Data and Spectral Index Techniques. Remote Sens. 2018, 10, 1862. [Google Scholar] [CrossRef]
- Boali, A.; Bashari, H.; Jafari, R. Evaluating the potential of Bayesian networks for desertification assessment in arid areas of Iran. Land Degrad. Dev. 2018, 30, 371–390. [Google Scholar] [CrossRef]
- Yang, G.; Li, F.; Chen, D.; He, X.; Xue, L.; Long, A. Assessment of changes in oasis scale and water management in the arid Manas River Basin, north western China. Sci. Total Environ. 2019, 691, 506–515. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Li, X.; Ling, H. Model for calculating suitable scales of oases in a continental river basin located in an extremely arid region, China. Environ. Earth Sci. 2014, 73, 571–580. [Google Scholar] [CrossRef]
- Ling, H.; Xu, H.; Fu, J.; Fan, Z.; Xu, X. Suitable oasis scale in a typical continental river basin in an arid region of China: A case study of the Manas River Basin. Quat. Int. 2013, 286, 116–125. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, M.; Long, A.; Deng, X.; Wang, H.; Hai, Y.; Wang, J.; Liu, Y. Coupling analysis of social-economic water consumption and its effects on the arid environments in Xinjiang of China based on the water and ecological footprints. J. Arid Land 2020, 12, 73–89. [Google Scholar] [CrossRef]
- Sun, D.; Yu, X.; Liu, X.; Li, B. A new artificial oasis landscape dynamics in semi-arid Hongsipu region with decadal agricultural irrigation development in Ning Xia, China. Earth Sci. Inform. 2015, 9, 21–33. [Google Scholar] [CrossRef]
- Li, J.; Feng, Q.; Guo, Q. Fractal study of sustainable proportions of natural and artificial oases. Environ. Geol. 2008, 55, 1396. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, H.; Li, Y.; Fan, Z.; Zhang, P.; Yu, P.; Ling, H. Oasis evolution and water resource utilization of a typical area in the inland river basin of an arid area: A case study of the Manas River valley. Environ. Earth Sci. 2011, 66, 683–692. [Google Scholar] [CrossRef]
- Yao, K.; Halike, A.; Chen, L.; Wei, Q. Spatiotemporal changes of eco-environmental quality based on remote sensing-based ecological index in the Hotan Oasis, Xinjiang. J. Arid Land 2022, 14, 262–283. [Google Scholar] [CrossRef]
- Song, Q.; Hu, B.; Peng, J.; Bourennane, H.; Biswas, A.; Opitz, T.; Shi, Z. Spatio-temporal variation and dynamic scenario simulation of ecological risk in a typical artificial oasis in northwestern China. J. Clean. Prod. 2022, 369, 133302. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, W.; Wang, S.; Sun, L. Eco-environmental effects of urban expansion in Xinjiang and the corresponding mechanisms. Eur. J. Remote Sens. 2020, 54, 132–144. [Google Scholar] [CrossRef]
- Cai, T.; Zhang, X.; Xia, F.; Zhang, Z.; Yin, J.; Wu, S. The Process-Mode-Driving Force of Cropland Expansion in Arid Regions of China Based on the Land Use Remote Sensing Monitoring Data. Remote Sens. 2021, 13, 2949. [Google Scholar] [CrossRef]
- Waldron, B.; Gui, D.; Liu, Y.; Feng, L.; Dai, H. Assessing water distribution and agricultural expansion in the Cele Oasis, China. Environ. Monit. Assess. 2020, 192, 288. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Gui, D.; Xue, D.; Liu, Y.; Ahmed, Z.; Lei, J. Analysis of the Expansion Characteristics and Carrying Capacity of Oasis Farmland in Northwestern China in Recent 40 Years. Agronomy 2022, 12, 2448. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, D.; Zhang, X.; Dong, W.; Zhang, X. Regional structure and spatial morphology characteristics of oasis urban agglomeration in arid area —A case of urban agglomeration in northern slope of Tianshan Mountains, Northwest China. Chin. Geogr. Sci. 2009, 19, 341–348. [Google Scholar] [CrossRef]
- Xia, N.; Hai, W.; Tang, M.; Song, J.; Quan, W.; Zhang, B.; Ma, Y. Spatiotemporal evolution law and driving mechanism of production–living–ecological space from 2000 to 2020 in Xinjiang, China. Ecol. Indic. 2023, 154, 110807. [Google Scholar] [CrossRef]
- Aizizi, Y.; Kasimu, A.; Liang, H.; Zhang, X.; Zhao, Y.; Wei, B. Evaluation of ecological space and ecological quality changes in urban agglomeration on the northern slope of the Tianshan Mountains. Ecol. Indic. 2023, 146, 109896. [Google Scholar] [CrossRef]
- Chidi, C.L. Geomorphic determinanats of landuse intensity. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 703–707. [Google Scholar] [CrossRef]
- Hao, L.; Su, X.; Singh, V.P.; Zhang, L.; Zhang, G. Suitable oasis and cultivated land scales in arid regions based on ecological health. Ecol. Indic. 2019, 102, 33–42. [Google Scholar] [CrossRef]
- Cheng, W. Geomorphological Patterns and Effects in Xinjiang; Science Press: Beijing, China, 2018. [Google Scholar]
- Cheng, W.; Zhou, C.; Li, B.; Shen, Y. Geomorphological regionalization theory system and division methodology of China. Acta Geogr. Sin. 2019, 74, 839–856. [Google Scholar]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of land use and cover change (LUCC) on terrestrial carbon stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Zhou, C.; Cheng, W.; Qian, J. Digital Geomorphological Interprestation and Mapping from Remote Sensing; Science Press: Beijing, China, 2009. [Google Scholar]
- Zhang, L.; Fang, C.; Zhao, R.; Zhu, C.; Guan, J. Spatial-temporal evolution and driving force analysis of eco-quality in urban agglomerations in China. Sci. Total Environ. 2023, 866, 161465. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Xifeng, J.; Junling, H.; Qi, Z.; Saitiniyazi, A. Evolution pattern and driving mechanism of eco-environmental quality in arid oasis belt—A case study of oasis core area in Kashgar Delta. Ecol. Indic. 2023, 154, 110866. [Google Scholar] [CrossRef]
- Burgos, V.; Jenkins, S.F.; Bono Troncoso, L.; Perales Moya, C.V.; Bebbington, M.; Newhall, C.; Amigo, A.; Prada Alonso, J.; Taisne, B. Identifying analogues for data-limited volcanoes using hierarchical clustering and expert knowledge: A case study of Melimoyu (Chile). Front. Earth Sci. 2023, 11, 1144386. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Fan, B.; Luo, G.; Hellwich, O.; Shi, X.; Ochege, F.U. Surface deformation detection and attribution in the Mountain-Oasis-Desert Landscape in north Tianshan Mountains. GIScience Remote Sens. 2023, 60, 2270814. [Google Scholar] [CrossRef]
- El-Tantawi, A.M.; Bao, A.; Chang, C.; Liu, Y. Monitoring and predicting land use/cover changes in the Aksu-Tarim River Basin, Xinjiang-China (1990–2030). Environ. Monit. Assess. 2019, 191, 480. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Jim, C.Y.; Chan, N.W.; Tan, M.L.; Kung, H.-T.; Shi, J.; Li, X.; He, X. Analysis of Urban Expansion and Human–Land Coordination of Oasis Town Groups in the Core Area of Silk Road Economic Belt, China. Land 2023, 12, 224. [Google Scholar] [CrossRef]
- Shi, G.; Ye, P.; Ding, L.; Quinones, A.; Li, Y.; Jiang, N. Spatio-Temporal Patterns of Land Use and Cover Change from 1990 to 2010: A Case Study of Jiangsu Province, China. Int. J. Environ. Res. Public Health 2019, 16, 907. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Ding, J.; Xie, X. Analysis of spatial–temporal evolution trends and influential factors of desert-oasis thermal environment in typical arid zone: The case of Turpan–Hami region. Ecol. Indic. 2023, 154, 110747. [Google Scholar] [CrossRef]
- Zheng, F.; Hu, Y. Assessing temporal-spatial land use simulation effects with CLUE-S and Markov-CA models in Beijing. Environ. Sci. Pollut. Res. 2018, 25, 32231–32245. [Google Scholar] [CrossRef]
- Yang, L.; Guan, Q.; Lin, J.; Tian, J.; Tan, Z.; Li, H. Evolution of NDVI secular trends and responses to climate change: A perspective from nonlinearity and nonstationarity characteristics. Remote Sens. Environ. 2021, 254, 112247. [Google Scholar] [CrossRef]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Mao, D.; Jin, Q.; Liu, Y. Oasification: An unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China. Catena 2019, 179, 197–209. [Google Scholar] [CrossRef]
- Xu, H.; Cheng, W.; Wang, B.; Song, K.; Zhang, Y.; Wang, R.; Bao, A. Effects of Geomorphic Spatial Differentiation on Vegetation Distribution Based on Remote Sensing and Geomorphic Regionalization. Remote Sens. 2024, 16, 1062. [Google Scholar] [CrossRef]
- Zhu, B. The recent evolution of dune landforms and its environmental indications in the mid-latitude desert area (Hexi Corridor). J. Geogr. Sci. 2022, 32, 617–644. [Google Scholar] [CrossRef]
- Wang, L.; Chang, J.; He, B.; Guo, A.; Wang, Y. Analysis of oasis land ecological security and influencing factors in arid areas. Land Degrad. Dev. 2023, 34, 3550–3567. [Google Scholar] [CrossRef]
- Yi, F.; Lu, Q.; Li, Y.; Wang, Z.; Yao, B.; Yang, Q.; Wang, J. Ecological vulnerability assessment of natural oasis in arid Areas: Application to Dunhuang, China. Ecol. Indic. 2023, 149, 110139. [Google Scholar] [CrossRef]
- Saxena, A.; Jat, M.K. Land suitability and urban growth modeling: Development of SLEUTH-Suitability. Comput. Environ. Urban Syst. 2020, 81, 101475. [Google Scholar] [CrossRef]
- Bantayan, N.C.; Bishop, I.D. Linking objective and subjective modelling for landuse decision-making. Landsc. Urban Plan. 1998, 43, 35–48. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, F.; Jim, C.-Y.; Chan, N.W.; Johnson, V.C.; Liu, C.; Duan, P.; Bahtebay, J. Spatio-temporal variations and drivers of ecological carrying capacity in a typical mountain-oasis-desert area, Xinjiang, China. Ecol. Eng. 2022, 180, 106672. [Google Scholar] [CrossRef]
- Lara, M.J.; McGuire, A.D.; Euskirchen, E.S.; Genet, H.; Yi, S.; Rutter, R.; Iversen, C.; Sloan, V.; Wullschleger, S.D. Local-scale Arctic tundra heterogeneity affects regional-scale carbon dynamics. Nat. Commun. 2020, 11, 4925. [Google Scholar] [CrossRef]
- Jahanishakib, F.; Mirkarimi, S.H.; Salmanmahiny, A.; Poodat, F. Land use change modeling through scenario-based cellular automata Markov: Improving spatial forecasting. Environ. Monit. Assess. 2018, 190, 332. [Google Scholar] [CrossRef]
- Lyu, Y.; Shi, P.; Han, G.; Liu, L.; Guo, L.; Hu, X.; Zhang, G. Desertification Control Practices in China. Sustainability 2020, 12, 3258. [Google Scholar] [CrossRef]
- Wu, C.; Lin, Z.; Shao, Y.; Liu, X.; Li, Y. Drivers of recent decline in dust activity over East Asia. Nat. Commun. 2022, 13, 7105. [Google Scholar] [CrossRef]
- Chen, P.; Wang, S.; Liu, Y.; Wang, Y.; Song, J.; Tang, Q.; Yao, Y.; Wang, Y.; Wu, X.; Wei, F.; et al. Spatio-Temporal Dynamics of Aboveground Biomass in China’s Oasis Grasslands between 1989 and 2021. Earth’s Future 2024, 12, e2023EF003944. [Google Scholar] [CrossRef]
- Guan, Q.; Guan, W.; Yang, J.; Zhao, S.; Pan, B.; Wang, L.; Song, N.; Lu, M.; Li, F. Spatial and temporal changes in desertification in the southern region of the Tengger Desert from 1973 to 2009. Theor. Appl. Climatol. 2016, 129, 487–502. [Google Scholar] [CrossRef]
- Zalles, V.; Hansen, M.C.; Potapov, P.V.; Parker, D.; Stehman, S.V.; Pickens, A.H.; Parente, L.L.; Ferreira, L.G.; Song, X.P.; Hernandez-Serna, A.; et al. Rapid expansion of human impact on natural land in South America since 1985. Sci. Adv. 2021, 7, eabg1620. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, X.; Shi, M. Human Driving Forces of Oasis Expansion in Northwestern China During the Last Decade—A Case Study of the Heihe River Basin. Land Degrad. Dev. 2016, 28, 412–420. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X. Land use/land cover change and statistical modelling of cultivated land change drivers in Nigeria. Reg. Environ. Change 2017, 18, 247–259. [Google Scholar] [CrossRef]
- Guo, S.; Wang, Y.; Shen, G.Q.P.; Zhang, B.; Wang, H. Virtual built-up land transfers embodied in China’s interregional trade. Land Use Policy 2020, 94, 104536. [Google Scholar] [CrossRef]
Genesis Type | Fluvial | Wind-Formed | Arid | Ice-Marginal | Glacial | Loess | Lake-Formed | Karst | Volcanic Lava |
---|---|---|---|---|---|---|---|---|---|
Area/104 km2 | 44.48 | 43.01 | 42.71 | 15.15 | 11.32 | 3.78 | 3.31 | 0.12 | 0.09 |
Percentage/% | 27.12 | 26.27 | 26.03 | 9.24 | 6.90 | 2.30 | 2.02 | 0.07 | 0.05 |
Pattern Type | Code | Patterns of Temporal and Spatial Variation | Number of Landform Types | Area (km2) | Percentage |
---|---|---|---|---|---|
Class I suitability | 1 | Maximum contribution to change, greater degree of exploitation | 1 | 119,452.22 | 7.39% |
Class II suitability | 2 | Second highest contribution to change, medium level of exploitation | 1 | 99,459.08 | 6.15% |
High-speed suitability | 3 | Rapid trend, low contribution to change, and high degree of exploitation | 1 | 3819.29 | 0.24% |
Low level of suitability | 4 | Rapid trend, low contribution to change, and little exploitation | 7 | 677,558.12 | 41.89% |
Mature suitability | 5 | Slow or even negative trend, low contribution, and high degree of exploitation | 2 | 5659.78 | 0.35% |
Marginal suitability | 6 | Slow or even negative trend, low contribution, and little exploitation | 10 | 711,504.77 | 43.99% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, K.; Cheng, W.; Wang, B.; Xu, H.; Wang, R.; Zhang, Y. Study on the Expansion Potential of Artificial Oases in Xinjiang by Coupling Geomorphic Features and Hierarchical Clustering. Remote Sens. 2024, 16, 1701. https://doi.org/10.3390/rs16101701
Song K, Cheng W, Wang B, Xu H, Wang R, Zhang Y. Study on the Expansion Potential of Artificial Oases in Xinjiang by Coupling Geomorphic Features and Hierarchical Clustering. Remote Sensing. 2024; 16(10):1701. https://doi.org/10.3390/rs16101701
Chicago/Turabian StyleSong, Keyu, Weiming Cheng, Baixue Wang, Hua Xu, Ruibo Wang, and Yutong Zhang. 2024. "Study on the Expansion Potential of Artificial Oases in Xinjiang by Coupling Geomorphic Features and Hierarchical Clustering" Remote Sensing 16, no. 10: 1701. https://doi.org/10.3390/rs16101701
APA StyleSong, K., Cheng, W., Wang, B., Xu, H., Wang, R., & Zhang, Y. (2024). Study on the Expansion Potential of Artificial Oases in Xinjiang by Coupling Geomorphic Features and Hierarchical Clustering. Remote Sensing, 16(10), 1701. https://doi.org/10.3390/rs16101701