Machine Learning-Based Fine Classification of Agricultural Crops in the Cross-Border Basin of the Heilongjiang River between China and Russia
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
2.3. Data Collection
3. Materials and Methods
3.1. Feature Set Construction
3.2. Random Forest Algorithm
3.3. Accuracy Evaluation
4. Results
4.1. Object-Level Plot Construction
4.2. Crop Classification
4.3. Wetland Feature Differentiation
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, Z. Effectively curbing black land degradation. Economic Daily News, 17 April 2024. [Google Scholar]
- Jiang, H.; Li, P.; Ren, A.; He, D.; Zhao, T. Problems, Dilemmas, and Policy Recommendations for the Protection and Utilization of Blackland in Heilongjiang Reclamation Area. Mod. Agric. 2024, 8, 75–77. [Google Scholar]
- Wei, S.; Wang, J.; Gu, W. China granary—Grain production analysis and resolving strategies in Heilongjiang Province. J. Northeast. Agric. Univ. 2011, 42, 1–8. [Google Scholar] [CrossRef]
- Liu, X.; Yan, B. Soil erosion and food security in the black soil region of Northeast China. Soil Water Conserv. China 2009, 30, 17–19. [Google Scholar] [CrossRef]
- Lin, T.; Xie, Y.; Liu, G.; Chen, D.L.; Duan, X.W. Impact of Climate Change on Crop Yields in Heilongjiang Province. J. Nat. Resour. 2008, 23, 307–318. [Google Scholar]
- Wang, Y.; Zang, S.; Tian, Y. Mapping paddy rice with the random forest algorithm using MODIS and SMAP time series. Chaos Solitons Fractals 2020, 140, 110116. [Google Scholar] [CrossRef]
- Chen, Y.; Lu, D.; Moran, E.; Batistella, M.; Dutra, L.V.; Sanches, I.D.A.; da Silva, R.F.B.; Huang, J.; Luiz, A.J.B.; de Oliveira, M.A.F. Mapping croplands, cropping patterns, and crop types using MODIS time-series data. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 133–147. [Google Scholar] [CrossRef]
- Li, R.; Xu, M.; Chen, Z.; Gao, B.; Cai, J.; Shen, F.; He, X.; Zhuang, Y.; Chen, D. Phenology-based classification of crop species and rotation types using fused MODIS and Landsat data: The comparison of a random-forest-based model and a decision-rule-based model. Soil Tillage Res. 2021, 206, 104838. [Google Scholar] [CrossRef]
- Du, B.; Zhang, J.; Wang, Z.; Mao, D.; Zhang, M.; Wu, B. Crop mapping based on Sentinel-2A NDVI time series using object-oriented classification and de-cision tree model. J. Geo-Inf. Sci. 2019, 21, 740–751. [Google Scholar] [CrossRef]
- Jie, W.; Zhang, Y.; Zhang, H.; Wu, N.; Zhang, Y. Remote Sensing Mapping of Spatial Distribution of Major Crops at County Level—Taking Tongjiang City as an Example. Mod. Agric. Mach. 2022, 03, 67–68. [Google Scholar]
- Song, Q. Study on the Extraction of Spatial Distribution Information of Agricultural Crops and the Analysis of Changes in Their Spatial and Temporal Patterns. Master’s Thesis, Chinese Academy of Agricultural Sciences (CASA), Beijing, China, 2018. [Google Scholar]
- Han, B. Remote Sensing Mapping of Bulk Crop Distribution in Jilin Province. Master’s Thesis, Jilin University, Changchun, China, 2020. [Google Scholar]
- Zhang, X.; Liu, K.; Wang, S.; Long, X.; Li, X. A Rapid Model (COV_PSDI) for Winter Wheat Mapping in Fallow Rotation Area Using MODIS NDVI Time-Series Satellite Observations: The Case of the Heilonggang Region. Remote Sens. 2021, 13, 4870. [Google Scholar] [CrossRef]
- Amani, M.; Brisco, B.; Afshar, M.; Mirmazloumi, S.M.; Mahdavi, S.; Mirzadeh, S.M.J.; Huang, W.; Granger, J. A generalized super-vised classification scheme to produce provincial wetland inventory maps: An appli-cation of Google Earth Engine for big geo data pro-cessing. Big Earth Data 2019, 3, 378–394. [Google Scholar] [CrossRef]
- Hird, J.N.; DeLancey, E.R.; McDermid, G.J.; Kariyeva, J. Google Earth Engine, open-access satellite data, and machine learning in support of large-area probabilistic wetland mapping. Remote Sens. 2017, 9, 1315. [Google Scholar] [CrossRef]
- Amani, M.; Ghorbanian, A.; Ahmadi, S.A.; Kakooei, M.; Moghimi, A.; Mirmazloumi, S.M.; Moghaddam, S.H.A.; Mahdavi, S.; Ghahremanloo, M.; Parsian, S.; et al. Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE J. Sel. Top. Ap-Plied Earth Obs. Remote Sens. 2020, 13, 5326–5350. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Plane-tary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 2, 18–27. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef]
- Wang, S.; Di Tommaso, S.; Deines, J.M.; Lobell, D.B. Mapping twenty years of maize and soybean across the US Midwest using the Landsat archive. Sci. Data 2020, 7, 307. [Google Scholar] [CrossRef]
- Ning, X.G.; Chang, W.T.; Wang, H.; Zhang, H.; Zhu, Q. Extraction of marsh wet-land in Heilongjiang Basin based on GEE and multi-source re-mote sensing data. Natl. Remote Sens. Bull. 2022, 26, 386–396. [Google Scholar] [CrossRef]
- Pluto-Kossakowska, J. Review on Multitemporal Classification Methods of Satellite Images for Crop and Arable Land Recognition. Agriculture 2021, 11, 999. [Google Scholar] [CrossRef]
- Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Sánchez Meador, A.J. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types. Remote Sens. Environ. 2017, 198, 490–503. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, B.; Niu, Y.; Chen, C.; Zhou, Y. Classification of coastal salt marsh based on Sentinel-1ime series backscattering characteristics: The case of the Yangtze River delta. Natl. Remote Sens. Bull. 2022, 26, 672–682. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, Z.N.; Wang, Q.W.; Jin, D.; Wang, X. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. J. Remote Sens. 2019, 23, 313–326. [Google Scholar] [CrossRef]
- Wu, H. Identification of Typical Crops in Northeast China Using MODIS and Landsat Time Series Data. Master’s Thesis, Liaoning University of Science and Technology, Anshan, China, 2022. [Google Scholar] [CrossRef]
- He, Y.; Huang, C.; Li, H.; Liu, Q.S.; Liu, G.H.; Zhou, Z.C.; Zhang, C.C. Land-cover classification of random forest based on Senti-nel-2A image feature optimization. Resour. Sci. 2019, 41, 992–1001. [Google Scholar]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud cover throughout the agricultural growing season: Impacts on passive optical earth observations. Remote Sens. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Tao, J.; Wu, W.; Zhou, Y.; Wang, Y.; Jiang, Y. Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data. J. Integr. Agric. 2017, 16, 348–359. [Google Scholar] [CrossRef]
- Defourny, P.; Bontemps, S.; Bellemans, N.; Cara, C.; Dedieu, G.; Guzzonato, E.; Hagolle, O.; Inglada, J.; Nicola, L.; Rabaute, T.; et al. Near real-time agriculture monitoring at national scale at parcel resolution: Performance assessment of the Sen2-Agri automated system in various cropping systems around the world. Remote Sens. Environ. 2019, 221, 551–568. [Google Scholar] [CrossRef]
- Teluguntla, P.; Thenkabail, P.S.; Oliphant, A.; Xiong, J.; Gumma, M.K.; Congalton, R.G.; Yadav, K.; Huete, A. Mapping cropland extent of Southeast and Northeast Asia using multi-year time-series Landsat 30-m data using a random forest classifier on the Google Earth Engine Cloud. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 110–124. [Google Scholar] [CrossRef]
- Li, X.; Liu, K.; Tian, J. Variability, predictability, and uncertainty in global aerosols inferred from gap-filled satellite observations and an econometric modeling approach. Remote Sens. 2021, 261, 112501. [Google Scholar] [CrossRef]
- Zhang, D.; Fang, S.; She, B.; Zhang, H.; Jin, N.; Xia, H.; Yang, Y.; Ding, Y. Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions. Remote Sens. 2019, 11, 2647. [Google Scholar] [CrossRef]
- Guo, J.; Zhu, L.; Jin, B. Crop classification based on data fusion of Sentinel-1 and Sentinel-2. Trans. Chin. Soc. Agric. Mach. 2018, 49, 192–198. [Google Scholar]
- Yang, L.; Wang, L.; Huang, J.; Mansaray, L.R.; Mijiti, R. Monitoring policy-driven crop area adjustments in northeast China using Landsat-8 imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101892. [Google Scholar] [CrossRef]
- Changxiu, C.; Taili, Y. The Method of Polygon Land Use Identify Supported by GIS-A Case Study for Dynamic Monitoring Land Using. J. China Agric. Univ. 2001, 6, 55–59. [Google Scholar]
- Wu, J.P.; Mao, Z.H.; Chen, J.Y.; Bai, Y.; Pan, D.L. A new classification method for coast remote sensing image. J. Mar. Sci. 2006, 24, 70–78. [Google Scholar]
- Yu, X.; Ji, Y.; Wang, L.; Xu, M. Research on Landscape Pattern Change and Driving Mechanism in Tiaozi Mud Reclamation Area in Jiangsu. J. Nanjing Norm. Univ. 2022, 45, 55–63. [Google Scholar]
- Yang, N.; Liu, D.; Feng, Q.; Xiong, Q.; Zhang, L.; Ren, T.; Zhao, Y.; Zhu, D.; Huang, J. Large-Scale Crop Mapping Based on Machine Learning and Parallel Computation with Grids. Remote Sens. 2019, 11, 1500. [Google Scholar] [CrossRef]
- Xue, Z.; Qian, S. Fusion of Landsat 8 and Sentinel-2 data for mangrove phenology information extraction and classification. J. Remote Sens. 2022, 26, 1121–1142. [Google Scholar] [CrossRef]
Sentinel-2 Bands | Wavelength (μm) | Reflection (m) |
---|---|---|
Band 1: Coastal aerosol | 0.443 | 60 |
Band 2: Blue | 0.490 | 10 |
Band 3: Green | 0.560 | 10 |
Band 4: Red | 0.665 | 10 |
Band 5: Vegetation red edge | 0.705 | 20 |
Band 6: Vegetation red edge | 0.740 | 20 |
Band 7: Vegetation red edge | 0.783 | 20 |
Band 8: NIR | 0.842 | 10 |
Band 8A: Vegetation red edge | 0.865 | 20 |
Band 9: Water vapor | 0.945 | 60 |
Band 10: SWIR-Cirrus | 1.375 | 60 |
Band 11: SWIR1 | 1.610 | 20 |
Band 12: SWIR2 | 2.190 | 20 |
Feature Variable | Acronym | Feature Description |
---|---|---|
Spectral characteristics | B | B1–B4, B8, B8a, B9–B12 |
Vegetation index | NDVI | (B8a − B4)/(B8a + B4) |
EVI | 2.5 × (B8a − B4)/(B8a + 6 × B4 − 7.5×B2 + 1) | |
MSAVI | 0.5 × (2 × B8a + 1 − sqrt((2 × B8a + 1) × (2 × B8a + 1) – 8 × (B8a − B4))) | |
Water index | NDWI | (B3 − B8a)/(B3 + B8a) |
Terrain index | Elevation | Elevation |
Slope | Slope |
Land Cover Type | Area (km2) | Proportion |
---|---|---|
Grassland | 557,706.11 | 24.4% |
Tree cover | 1,426,354.90 | 62.3% |
Soybeans | 57,646.60 | 2.5% |
Water | 35,620.78 | 1.6% |
Wetland | 18,098.08 | 0.8% |
Constructed land | 92,187.46 | 4.0% |
Wheat | 8782.31 | 0.4% |
Rice | 53,209.53 | 2.3% |
Maize | 39,998.37 | 1.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Wang, J.; Fetisov, D.; Li, K.; Xu, C.; Jiang, J. Machine Learning-Based Fine Classification of Agricultural Crops in the Cross-Border Basin of the Heilongjiang River between China and Russia. Remote Sens. 2024, 16, 1670. https://doi.org/10.3390/rs16101670
Liu M, Wang J, Fetisov D, Li K, Xu C, Jiang J. Machine Learning-Based Fine Classification of Agricultural Crops in the Cross-Border Basin of the Heilongjiang River between China and Russia. Remote Sensing. 2024; 16(10):1670. https://doi.org/10.3390/rs16101670
Chicago/Turabian StyleLiu, Meng, Juanle Wang, Denis Fetisov, Kai Li, Chen Xu, and Jiawei Jiang. 2024. "Machine Learning-Based Fine Classification of Agricultural Crops in the Cross-Border Basin of the Heilongjiang River between China and Russia" Remote Sensing 16, no. 10: 1670. https://doi.org/10.3390/rs16101670
APA StyleLiu, M., Wang, J., Fetisov, D., Li, K., Xu, C., & Jiang, J. (2024). Machine Learning-Based Fine Classification of Agricultural Crops in the Cross-Border Basin of the Heilongjiang River between China and Russia. Remote Sensing, 16(10), 1670. https://doi.org/10.3390/rs16101670