Remote Sensing Image Retrieval Algorithm for Dense Data
Abstract
:1. Introduction
2. Materials
2.1. Experimental Satellite Information
2.2. Data Sources
3. Methods
3.1. Calculating the Weight of Each Image
3.2. Calculate the Inclusion Relationship between the Image and the Grid
3.3. Optimal Regional Coverage of Remote Sensing Image
3.3.1. Compute the Compulsory Subsets
3.3.2. Greedy Computation
3.3.3. Local Search
- Weighted gain-loss scheme
- b.
- Novel mechanism
Algorithm 1. Optimal regional coverage of remote sensing image |
Input I: Candidate data of remote sensing image Output R*: Optimal region coverage result 1: Calculate the unit elements e and compulsory subsets . 2: Remove the unit elements e from the elements E to be covered to get E*. 3: Calculate the initial solution R by greedy algorithm. 4: R* R 5: While the abort criterion is not met: 6: if R covers E* 7: if cost(R) < cost(R*) 8: R* R. 9: Compute for each subset in the current state. 10: Remove a small subsets which includes the subset with the smallest . 11: Compute for each subset in the current state. 12: With probability p select the suboptimal , otherwise, select the optimal one. 13: Add the corresponding subset to R*. 14: R* R* 15: Output the final result R* |
3.4. Data Distribution Assessment Indicators
- Coverage Ratio (CR): This metric represents the total coverage of the resulting image result set as a proportion of the region of interest.
- Image Density (ID): The number of images of each grid is calculated as the image density for that grid.
- Average Image Density (AID): The average of the image densities of all grids is calculated to represent the overall density of the result.
- Redundancy Ratio (RR): This metric indicates the amount of redundancy in the coverage area of the resulting image result set. The formula is as follows:
- Utilization Ratio (UR): This metric represents the average utilization rate of images. The formula is as follows:
4. Results
4.1. Analysis of the Distribution of Results
4.1.1. Quantitative Evaluation
4.1.2. Visualization and Analysis
- Anhui dataset
- 2.
- Qinghai dataset
- 3.
- Xinjiang dataset
4.2. Quality Evaluation of Images
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shi, S.; Zhong, Y.; Zhao, J.; Lv, P.; Liu, Y.; Zhang, L. Land-Use/Land-Cover Change Detection Based on Class-Prior Object-Oriented Conditional Random Field Framework for High Spatial Resolution Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Nemni, E.; Bullock, J.; Belabbes, S.; Bromley, L. Fully Convolutional Neural Network for Rapid Flood Segmentation in Synthetic Aperture Radar Imagery. Remote Sens. 2020, 12, 2532. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, R.; Liu, T.; Xu, K. Crop Yield Prediction Based on Agrometeorological Indexes and Remote Sensing Data. Remote Sens. 2021, 13, 2016. [Google Scholar] [CrossRef]
- Du, P.; Liu, S.; Xia, J.; Zhao, Y. Information fusion techniques for change detection from multi-temporal remote sensing images. Inf. Fusion 2013, 14, 19–27. [Google Scholar] [CrossRef]
- Tong, X.-Y.; Xia, G.-S.; Lu, Q.; Shen, H.; Li, S.; You, S.; Zhang, L. Land-cover classification with high-resolution remote sensing images using transferable deep models. Remote Sens. Environ. 2020, 237, 111322. [Google Scholar] [CrossRef]
- Yu, Q.; Shang, Y.; Liu, X.; Lei, Z.; Li, X.; Zhu, X.; Liu, X.; Yang, X.; Su, A.; Zhang, X.; et al. Full-parameter vision navigation based on scene matching for aircrafts. Sci. China Inf. Sci. 2014, 57, 1–10. [Google Scholar] [CrossRef]
- Ivancsits, C.; Ricky Lee, M.F. Visual navigation system for small unmanned aerial vehicles. Sens. Rev. 2013, 33, 267–291. [Google Scholar] [CrossRef]
- Durbha, S.S.; King, R.L.; Shah, V.P.; Younan, N.H. Image information mining for coastal disaster management. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 342–345. [Google Scholar]
- Panteras, G.; Cervone, G. Enhancing the temporal resolution of satellite-based flood extent generation using crowdsourced data for disaster monitoring. Int. J. Remote Sens. 2018, 39, 1459–1474. [Google Scholar] [CrossRef]
- Dell’Acqua, F.; Gamba, P. Query-by-shape in meteorological image archives using the point diffusion technique. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1834–1843. [Google Scholar] [CrossRef]
- Rivest, S.; Bédard, Y.; Proulx, M.-J.; Nadeau, M.; Hubert, F.; Pastor, J. SOLAP technology: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. ISPRS J. Photogramm. Remote Sens. 2005, 60, 17–33. [Google Scholar] [CrossRef]
- Reichman, O.J.; Jones, M.B.; Schildhauer, M.P. Challenges and Opportunities of Open Data in Ecology. Science 2011, 331, 703–705. [Google Scholar] [CrossRef] [PubMed]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Carrasco, L.; O’Neil, A.W.; Morton, R.D.; Rowland, C.S. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sens. 2019, 11, 288. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Baumann, P.; Mazzetti, P.; Ungar, J.; Barbera, R.; Barboni, D.; Beccati, A.; Bigagli, L.; Boldrini, E.; Bruno, R.; Calanducci, A.; et al. Big Data Analytics for Earth Sciences: The EarthServer approach. Int. J. Digit. Earth 2016, 9, 3–29. [Google Scholar] [CrossRef]
- Zuo, X.; Xiong, M.; Huang, Z.; Zang, W.; Shang, D. A Full Coverage Retrieval Mode and Method for Remote Sensing Tile Data. J. Henan Univ. Nat. Sci 2018, 48, 299–308. [Google Scholar]
- Ni, R. A JSON-based heterogeneous data query method. Radio Commun. Technol. 2013, 39, 73–76. [Google Scholar]
- Wang, S. Research on capacity demand estimation method of remote sensing data service system. Radio Eng. 2013, 43, 61–64. [Google Scholar]
- Pan, J.; Chen, L.; Wang, M. A Full-Coverage Remote Sensing Image Screening Method Based on Quality Grading and Spatio-Temporal Constraints. CN114842184A, 2 August 2022. [Google Scholar]
- Huang, Z.; Wang, D.; Yu, T.; Zhang, S.; He, F. A Single-Time-Phase Full-Coverage Remote Sensing Data Retrieval Method Based on Grid Compensation. CN107291801A, 24 October 2017. [Google Scholar]
- Sun, K.; Chen, J.; Wang, M.; Li, F.; Wang, S.; Shuai, T. A Fast Retrieval Method for Remote Sensing Images Based on Circular Region Description. CN111984808A, 24 November 2020. [Google Scholar]
- Li, F.; You, S.; Wei, H.; Wei, R.; Chen, L. Filtering model for optimal dataset of remote sensing image area coverage. Radio Eng. 2017, 47, 45–48. [Google Scholar]
- Yang, X.; Yan, J. Research on Optimal Area Coverage Algorithm of ZY-3 Satellite Images. J. Geomat. 2019, 44, 71–74. [Google Scholar] [CrossRef]
- Chu, B.; Gao, F.; Chai, Y.; Liu, Y.; Yao, C.; Chen, J.; Wang, S.; Li, F.; Zhang, C. Large-Area Full-Coverage Remote Sensing Image Collection Filtering Algorithm for Individual Demands. Sustainability 2021, 13, 13475. [Google Scholar] [CrossRef]
- Yan, X.; Liu, S.; Liu, W.; Dai, Q. An improved coverage-oriented retrieval algorithm for large-area remote sensing data. Int. J. Digit. Earth 2022, 15, 606–625. [Google Scholar] [CrossRef]
- Karp, R.M. Reducibility Among Combinatorial Problems. In 50 Years of Integer Programming 1958–2008: From the Early Years to the State-of-the-Art; Jünger, M., Liebling, T.M., Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey, L.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 219–241. [Google Scholar]
- Chvatal, V. A Greedy Heuristic for the Set-Covering Problem. Math. Oper. Res. 1979, 4, 233–235. [Google Scholar] [CrossRef]
- Caprara, A.; Toth, P.; Fischetti, M. Algorithms for the Set Covering Problem. Ann. Oper. Res. 2000, 98, 353–371. [Google Scholar] [CrossRef]
- Beasley, J.E.; Chu, P.C. A genetic algorithm for the set covering problem. Eur. J. Oper. Res. 1996, 94, 392–404. [Google Scholar] [CrossRef]
- Jacobs, L.W.; Brusco, M.J. Note: A local-search heuristic for large set-covering problems. Nav. Res. Logist. 1995, 42, 1129–1140. [Google Scholar] [CrossRef]
- Gao, C.; Weise, T.; Li, J. A weighting-based local search heuristic algorithm for the Set Covering Problem. In Proceedings of the 2014 IEEE Congress on Evolutionary Computation (CEC), Beijing, China, 6–11 July 2014; pp. 826–831. [Google Scholar]
- McAllester, D.; Selman, B.; Kautz, H. Evidence for invariants in local search. In Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, Providence, RI, USA, 27–31 July 1997; pp. 321–326. [Google Scholar]
- Hoos, H.H. An adaptive noise mechanism for walkSAT. In Proceedings of the Eighteenth National Conference on Artificial intelligence, Edmonton, AB, Canada, 28 July–1 August 2002; pp. 655–660. [Google Scholar]
- Balint, A.; Fröhlich, A. Improving Stochastic Local Search for SAT with a New Probability Distribution. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2010, Edinburgh, UK, 11–14 July 2010; pp. 10–15. [Google Scholar]
- Luo, C.; Cai, S.; Su, K.; Wu, W. Clause States Based Configuration Checking in Local Search for Satisfiability. IEEE Trans. Cybern. 2015, 45, 1028–1041. [Google Scholar] [CrossRef]
- Luo, C.; Cai, S.; Wu, W.; Jie, Z.; Su, K. CCLS: An Efficient Local Search Algorithm for Weighted Maximum Satisfiability. IEEE Trans. Comput. 2015, 64, 1830–1843. [Google Scholar] [CrossRef]
- Luo, C.; Hoos, H.H.; Cai, S.; Lin, Q.; Zhang, H.; Zhang, D. Local search with efficient automatic configuration for minimum vertex cover. In Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 1297–1304. [Google Scholar]
- Lei, Z.; Cai, S. Solving Set Cover and Dominating Set via Maximum Satisfiability. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 1569–1576. [Google Scholar]
- Luo, C.; Xing, W.; Cai, S.; Hu, C. NuSC: An Effective Local Search Algorithm for Solving the Set Covering Problem. IEEE Trans. Cybern. 2022; early access. [Google Scholar] [CrossRef]
- Zhang, X.; Tan, C.; Ying, W. An Imaging Algorithm for Multireceiver Synthetic Aperture Sonar. Remote Sens. 2019, 11, 672. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, H.; Sun, H.; Ying, W. Multireceiver SAS Imagery Based on Monostatic Conversion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10835–10853. [Google Scholar] [CrossRef]
Project | Parameters |
---|---|
Launch Time | 2 June 2018 |
Orbit Type | Sun-synchronous Orbit |
Orbital Altitude | 644.5472 km |
Orbital Period | 97.4658 min |
Regression Cycle | 41 days |
Spatial Resolution | Panchromatic: 2 m, Multispectral: 8 m |
Swath Width | 95 km |
Quantified Value | 12 bits |
Region | Method | Count | CR | AID | RR | UR |
---|---|---|---|---|---|---|
Anhui | Candidate data | 148 | 100% | 3.99 | 889% | - |
Li et al. [23] | 68 | 100% | 2.25 | 359% | 12% | |
Greedy Algorithm | 50 | 100% | 1.62 | 242% | 32% | |
DD-RSIRA | 48 | 100% | 1.50 | 214% | 36% | |
Qinghai | Candidate data | 857 | 100% | 6.16 | 1000% | - |
Li et al. [23] | 313 | 100% | 2.64 | 302% | 7% | |
Greedy Algorithm | 263 | 100% | 2.08 | 236% | 14% | |
DD-RSIRA | 240 | 100% | 1.88 | 205% | 22% | |
Xinjiang | Candidate data | 2222 | 100% | 7.88 | 1160% | - |
Li et al. [23] | 644 | 100% | 2.52 | 263% | 7% | |
Greedy Algorithm | 531 | 100% | 1.99 | 198% | 16% | |
DD-RSIRA | 487 | 100% | 1.84 | 172% | 20% |
Region | Method | Min | Q1 | Q2 | Q3 | Max |
---|---|---|---|---|---|---|
Anhui | Li et al. | 0.0291 | 0.1633 | 0.2916 | 0.3548 | 0.5791 |
Greedy Algorithm | 0.0392 | 0.1590 | 0.2691 | 0.3457 | 0.5791 | |
DD-RSIRA | 0.0392 | 0.1621 | 0.2691 | 0.3521 | 0.5791 | |
Qinghai | Li et al. | 0.0074 | 0.2210 | 0.3101 | 0.4050 | 0.5959 |
Greedy Algorithm | 0.0074 | 0.2084 | 0.2986 | 0.3879 | 0.5959 | |
DD-RSIRA | 0.0074 | 0.2073 | 0.2942 | 0.3704 | 0.5959 | |
Xinjiang | Li et al. | 0.0020 | 0.1451 | 0.2356 | 0.3067 | 0.5408 |
Greedy algorithm | 0.0020 | 0.1201 | 0.2186 | 0.2930 | 0.5408 | |
DD-RSIRA | 0.0020 | 0.1194 | 0.2233 | 0.2930 | 0.5408 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liu, S.; Liu, W. Remote Sensing Image Retrieval Algorithm for Dense Data. Remote Sens. 2024, 16, 98. https://doi.org/10.3390/rs16010098
Li X, Liu S, Liu W. Remote Sensing Image Retrieval Algorithm for Dense Data. Remote Sensing. 2024; 16(1):98. https://doi.org/10.3390/rs16010098
Chicago/Turabian StyleLi, Xin, Shibin Liu, and Wei Liu. 2024. "Remote Sensing Image Retrieval Algorithm for Dense Data" Remote Sensing 16, no. 1: 98. https://doi.org/10.3390/rs16010098
APA StyleLi, X., Liu, S., & Liu, W. (2024). Remote Sensing Image Retrieval Algorithm for Dense Data. Remote Sensing, 16(1), 98. https://doi.org/10.3390/rs16010098