Analysis of Earthquake-Triggered Landslides through an Integrated Unmanned Aerial Vehicle-Based Approach: A Case Study from Central Italy
Abstract
:1. Introduction
- A UAV photogrammetric survey devoted to the definition of the VOM of the investigated slope;
- A geomechanical characterisation of the rock mass based on coupling the VOM interpretation to field data collected through conventional methods;
- A reconstruction of a reliable geological–geotechnical model, providing the basis for three-dimensional Limit Equilibrium (LE) stability analyses in static and dynamic conditions.
2. Geological and Seismological Setting of the Study Area
3. Materials and Methods
3.1. Remote Sensing Investigations
3.2. Geomechanical Investigations
3.3. Numerical Modelling
4. Results
4.1. Structural Analysis
4.2. Stability Analyses
4.2.1. Preliminary Kinematic Analyses
4.2.2. Three-Dimensional Limit Equilibrium Analyses
- -
- σci is the uniaxial compressive strength of the rock material;
- -
- mb expresses the effect of the confining stress and it is equal to the coefficient mi of the rock material, scaled to the rock mass;
- -
- sb expresses the intensity of the damage (fracturing) of the rock mass;
- -
- a adjusts the curvature for the application to the rock mass.
5. Discussions
6. Conclusions
- -
- The study area is characterised by the occurrence of four main sets of discontinuities, striking NW–SE, NE–SW, NNW–SSE, and N–S.
- -
- The principal sliding surface and the lateral surfaces of the rockslide scar reactivated the pathways of pre-existing NW–SE and NE–SW trending sets. In particular, the kinematic analysis showed that the failure mechanism that occurred was the planar sliding on the main sliding surface (Ss), which corresponds to the set K4.
- -
- The slope stability analyses under static conditions highlighted how the slope was already not far from a critical status even before the earthquake, mainly due to the geostructural and geomechanical settings. Regarding the latter aspect, the key role played by the joint roughness was also pointed out.
- -
- The analyses in dynamic conditions provided reliable results both in terms of coseismic displacements (28 cm) and mobilised volume (40,000 m3). Such analyses confirm that the Norcia earthquake was the triggering event, although, in principle, the Visso earthquake could also have caused coseismic displacements.
Author Contributions
Funding
Data Availability Statement
Acknowledgements
Conflicts of Interest
References
- Carlton, B.; Kaynia, A.M.; Nadim, F. Some important considerations in analysis of earthquake-induced landslides. Geoenviron. Disasters 2016, 3, 11. [Google Scholar] [CrossRef]
- Basharat, M.; Riaz, M.T.; Jan, M.Q.; Xu, C.; Riaz, S. A review of landslides related to the 2005 Kashmir Earthquake: Implication and future challenges. Nat. Hazards 2021, 108, 1–30. [Google Scholar] [CrossRef]
- Song, C.; Yu, C.; Li, Z.; Utili, S.; Frattini, P.; Crosta, G.; Peng, J. Triggering and recovery of earthquake accelerated landslides in Central Italy revealed by satellite radar observations. Nat. Commun. 2022, 13, 7278. [Google Scholar] [CrossRef] [PubMed]
- Chigira, M.; Wu, X.; Inokuchi, T.; Wang, G. Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 2010, 118, 225–238. [Google Scholar] [CrossRef]
- Fan, X.; Yunus, A.P.; Scaringi, G.; Catani, F.; Siva Subramanian, S.; Xu, Q.; Huang, R. Rapidly Evolving controls of landslides after a strong earthquake and implications for hazard assessments. Geophys. Res. Lett. 2021, 48, e2020GL090509. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Q.; van Westen, C.J.; Huang, R.; Tang, R. Characteristics and classification of landslide dams associated with the 2008 Wenchuan earthquake. Geoenviron. Disasters 2017, 4, 12. [Google Scholar] [CrossRef]
- Ehteshami-Moinabadi, M.; Nasiri, S. Geometrical and structural setting of landslide dams of the Central Alborz: A link between earthquakes and landslide damming. Bull. Eng. Geol. Environ. 2019, 78, 69–88. [Google Scholar] [CrossRef]
- Chen, T.C.; Lin, M.L.; Wang, K.L. Landslide seismic signal recognition and mobility for an earthquake-induced rockslide in Tsaoling, Taiwan. Eng. Geol. 2014, 171, 31–44. [Google Scholar] [CrossRef]
- Luo, J.; Pei, X.; Evans, S.G.; Huang, R. Mechanics of the earthquake-induced Hongshiyan landslide in the 2014 Mw 6.2 Ludian earthquake, Yunnan, China. Eng. Geol. 2019, 251, 197–213. [Google Scholar] [CrossRef]
- Oswald, P.; Strasser, M.; Hammerl, C.; Moernaut, J. Seismic control of large prehistoric rockslides in the Eastern Alps. Nat. Commun. 2021, 12, 1059. [Google Scholar] [CrossRef]
- Strom, A.; Wang, G. Some Earthquake-Induced Rockslides in the Central Asia Region. In Coseismic Landslides: Phenomena, Long-Term Effects and Mitigation; Towhata, I., Wang, G., Xu, Q., Massey, C., Eds.; Springer Nature: Singapore, 2022; pp. 143–168. [Google Scholar]
- Antonielli, B.; Della Seta, M.; Esposito, C.; Scarascia Mugnozza, G.; Schilirò, L.; Spadi, M.; Tallini, M. Quaternary rock avalanches in the Apennines: New data and interpretation of the huge clastic deposit of the L’Aquila Basin (central Italy). Geomorphology 2020, 361, 107194. [Google Scholar] [CrossRef]
- Putignano, M.L.; Di Luzio, E.; Schilirò, L.; Pietrosante, A.; Giano, S.I. The Pretare-Piedilama clastic deposit: New evidence of a Quaternary rock avalanche event in central Apennines (Italy). Water 2023, 15, 753. [Google Scholar] [CrossRef]
- Franke, K.W.; Lingwall, B.N.; Zimmaro, P.; Kayen, R.E.; Tommasi, P.; Chiabrando, F.; Santo, A. Phased reconnaissance approach to documenting landslides following the 2016 Central Italy earthquakes. Earthq. Spectra 2018, 34, 1693–1719. [Google Scholar] [CrossRef]
- Martino, S.; Bozzano, F.; Caporossi, P.; D’Angiò, D.; Della Seta, M.; Esposito, C.; Fantini, A.; Fiorucci, M.; Giannini, L.M.; Iannucci, R.; et al. Impact of landslides on transportation routes during the 2016–2017 Central Italy seismic sequence. Landslides 2019, 16, 1221–1241. [Google Scholar] [CrossRef]
- Romeo, S.; Di Matteo, L.; Melelli, L.; Cencetti, C.; Dragoni, W.; Fredduzzi, A. Seismic-induced rockfalls and landslide dam following the October 30, 2016 earthquake in Central Italy. Landslides 2017, 14, 1457–1465. [Google Scholar] [CrossRef]
- Forte, G.; Verrucci, L.; Di Giulio, A.; De Falco, M.; Tommasi, P.; Lanzo, G.; Franke, K.W.; Santo, A. Analysis of major rock slides that occurred during the 2016–2017 Central Italy seismic sequence. Eng. Geol. 2021, 290, 106194. [Google Scholar] [CrossRef]
- Schilirò, L.; Rossi, M.; Polpetta, F.; Fiorucci, F.; Fortunato, C.; Reichenbach, P. A web-based GIS (web-GIS) database of the scientific articles on earthquake-triggered landslides. Nat. Hazards Earth Syst. Sci. 2023, 23, 1789–1804. [Google Scholar] [CrossRef]
- Valkaniotis, S.; Papathanassiou, G.; Ganas, A. Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece. Eng. Geol. 2018, 245, 141–152. [Google Scholar] [CrossRef]
- Ma, S.; Wei, J.; Xu, C.; Shao, X.; Xu, S.; Chai, S.; Cui, Y. UAV survey and numerical modeling of loess landslides: An example from Zaoling, southern Shanxi Province, China. Nat. Hazards 2020, 104, 1125–1140. [Google Scholar] [CrossRef]
- Baghbanan, A.; Kefayati, S.; Torkan, M.; Hashemolhosseini, H.; Narimani, R. Numerical probabilistic analysis for slope stability in fractured rock masses using DFN-DEM approach. Int. J. Min. Geo-Eng. 2017, 51, 79–90. [Google Scholar] [CrossRef]
- Cheng, Z.; Gong, W.; Tang, H.; Juang, C.H.; Deng, Q.; Chen, J.; Ye, X. UAV photogrammetry-based remote sensing and preliminary assessment of the behavior of a landslide in Guizhou, China. Eng. Geol. 2021, 289, 106172. [Google Scholar] [CrossRef]
- Verrucci, L.; Forte, G.; De Falco, M.; Tommasi, P.; Lanzo, G.; Franke, K.W.; Santo, A. Instantaneous limit equilibrium back analyses of major rockslides triggered during the 2016–2017 central Italy seismic sequence. Nat. Hazards Earth Syst. Sci. 2023, 23, 1177–1190. [Google Scholar] [CrossRef]
- Piras, M.; Taddia, G.; Forno, M.G.; Gattiglio, M.; Aicardi, I.; Dabove, P.; Russo, S.L.; Lingua, A. Detailed geological mapping in mountain areas using an unmanned aerial vehicle: Application to the Rodoretto Valley, NW Italian Alps. Geomat. Nat. Hazards Risk 2017, 8, 137–149. [Google Scholar] [CrossRef]
- Francioni, M.; Antonaci, F.; Sciarra, N.; Robiati, C.; Coggan, J.; Stead, D.; Calamita, F. Application of Unmanned Aerial Vehicle Data and Discrete Fracture Network Models for Improved Rockfall Simulations. Remote Sens. 2020, 12, 2053. [Google Scholar] [CrossRef]
- Massaro, L.; Corradetti, A.; Vinci, F.; Tavani, S.; Iannace, A.; Parente, M.; Mazzoli, S. Multiscale fracture analysis in a reservoir-scale carbonate platform exposure (Sorrento Peninsula, Italy): Implications for fluid flow. Geofluids 2018, 2018, 1–10. [Google Scholar] [CrossRef]
- Schilirò, L.; Robiati, C.; Smeraglia, L.; Vinci, F.; Iannace, A.; Parente, M.; Tavani, S. An integrated approach for the reconstruction of rockfall scenarios from UAV and satellite-based data in the Sorrento Peninsula (southern Italy). Eng. Geol. 2022, 308, 106795. [Google Scholar] [CrossRef]
- Fazio, N.L.; Perrotti, M.; Andriani, G.F.; Mancini, F.; Rossi, P.; Castagnetti, C.; Lollino, P. A new methodological approach to assess the stability of discontinuous rocky cliffs using in-situ surveys supported by UAV-based techniques and 3-D finite element model: A case study. Eng. Geol. 2019, 260, 105205. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Pierantoni, P.; Deiana, G.; Galdenzi, S. Stratigraphic and structural features of the sibillini mountains(Umbria- Marche Apennines, Italy). Ital. J. Geosci. 2013, 132, 497–520. [Google Scholar] [CrossRef]
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. Catalogo Parametrico dei Terremoti Italiani (CPTI15), Versione 4.0; Instituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2022. [Google Scholar] [CrossRef]
- Esposito, E.; Porfido, S.; Simonelli, A.L.; Mastrolorenzo, G.; Iaccarino, G. Landslides and other surface effects induced by the 1997 Umbria–Marche seismic sequence. Eng. Geol. 2000, 58, 353–376. [Google Scholar] [CrossRef]
- Guzzetti, F.; Esposito, E.; Balducci, V.; Porfido, S.; Cardinali, M.; Violante, C.; Fiorucci, F.; Sacchi, M.; Ardizzone, F.; Mondini, A. Central Italy seismic sequences-induced landsliding: 1997–1998 Umbria Marche and 2008–2009 L’Aquila cases. In Proceedings of the Next Generation of Research on Earthquake-Induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, Taiwan, 21–16 September 2009; pp. 52–60. [Google Scholar]
- Antonini, G.; Ardizzone, F.; Cardinali, M.; Galli, M.; Guzzetti, F.; Paola, R. Surface deposits and landslide inventory map of the area affected by the 1997 Umbria-Marche earthquakes. Boll. Della Soc. Geol. Ital. 2002, 121, 843–853. [Google Scholar]
- Tavani, S.; Arbues, P.; Snidero, M.; Carrera, N.; Muñoz, J.A. Open Plot Project: An open-source toolkit for 3-D structural data analysis. Solid Earth 2011, 2, 53–63. [Google Scholar] [CrossRef]
- Dewez, T.J.B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J. Facets: A CloudCompare plugin to extract geological planes from unstructured 3D point clouds. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 799–804. [Google Scholar] [CrossRef]
- Fernández, O. Obtaining a best fitting plane through 3D georeferenced data. J. Struct. Geol. 2005, 27, 855–858. [Google Scholar] [CrossRef]
- Kim, D.H.; Gratchev, I.; Balasubramaniam, A. Determination of joint roughness coefficient (JRC) for slope stability analysis: A case study from the Gold Coast area, Australia. Landslides 2013, 10, 657–664. [Google Scholar] [CrossRef]
- Bentley Systems Inc. Plaxis LE Slope Stability—Theory Manual; Bentley Systems Inc.: Delft, The Netherlands, 2021. [Google Scholar]
- Rocscience Inc. Dips Version 8.0—Graphical and Statistical Analysis of Orientation Data; Rocscience Inc.: Toronto, ON, Canada, 2020; Available online: https://www.rocscience.com/ (accessed on 1 January 2021).
- Sarma, S.K. Stability analysis of embankments and slopes. Géotechnique 1973, 23, 423–433. [Google Scholar] [CrossRef]
- Duncan, J.M.; Wright, S.G.; Brandon, T.L. Soil Strength and Slope Stability; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Chakraborty, A.; Goswami, D. State of the art: Three dimensional (3D) slope-stability analysis. Int. J. Geotech. Eng. 2016, 10, 493–498. [Google Scholar] [CrossRef]
- Firincioglu, B.S.; Ercanoglu, M. Insights and perspectives into the limit equilibrium method from 2D and 3D analyses. Eng. Geol. 2021, 281, 105968. [Google Scholar] [CrossRef]
- Shou, Y.; Zhao, X.; Zhou, X. Novel Three-Dimensional Sarma method with vertical slices for stability analysis of rock slopes. Int. J. Geomech. 2021, 22, 04021302. [Google Scholar] [CrossRef]
- Cheng, Y.M.; Yip, C.J. Three-Dimensional Asymmetrical Slope Stability Analysis Extension of Bishop’s, Janbu’s, and Morgenstern–Price’s Techniques. J. Geotech. Geoenviron. Eng. 2007, 133, 1544–1555. [Google Scholar] [CrossRef]
- Hoek, E.; Carranza-Torres, C.; Corkum, B. Hoek-Brown failure criterion-2002 edition. Proc. NARMS-Tac 2002, 1, 267–273. [Google Scholar]
- Priest, S.D. Determination of shear strength and three dimensional yield strength for the Hoek–Brown criterion. Rock Mech. Rock Eng. 2005, 38, 299–327. [Google Scholar] [CrossRef]
- Kumar, V.; Himanshu, N.; Burman, A. Rock slope analysis with nonlinear Hoek–Brown criterion incorporating equivalent Mohr–Coulomb parameters. Geotech. Geol. Eng. 2019, 37, 4741–4757. [Google Scholar] [CrossRef]
- Gonzalez, D.V.L.; Ferrer, M. Geological Engineering; CRC Press/Balkema: Leiden, The Netherlands, 2011; 678p. [Google Scholar]
- Bandis, S.C. Scale effects in the strength and deformability of rocks and rock joints. In Proceedings of the First International Workshop on Scale Effects in Rock Masses, Loen, Norway, 7–8 June 1990; pp. 59–76. [Google Scholar]
- Barton, N.; Bandis, S.C. Effect of block size on the shear behavior of jointed rocks. In Proceedings of the 23rd Symposium on Rock Mechanics, Berkeley, CA, USA, 25–27 August 1982; pp. 739–760. [Google Scholar]
- Barton, N.; Wang, C.; Yong, R. Advances in joint roughness coefficient (JRC) and its engineering applications. J. Rock Mech. Geotech. Eng. 2023, 15, 3352–3379. [Google Scholar] [CrossRef]
- Newmark, N.M. Effects of earthquakes on dams and embankments. Geotechnique 1965, 15, 139–160. [Google Scholar] [CrossRef]
- Barton, N. Scale effects or sampling bias. In Proceedings of the First International Workshop on Scale Effects in Rock Masses, Loen, Norway, 7–8 June 1990; pp. 31–55. [Google Scholar]
- Martino, S.; Battaglia, S.; D’Alessandro, F.; Della Seta, M.; Esposito, C.; Martini, G.; Pallone, F.; Troiani, F. Earthquake-induced landslide scenarios for seismic microzonation: Application to the Accumoli area (Rieti, Italy). Bull. Earthq. Eng. 2020, 18, 5655–5673. [Google Scholar] [CrossRef]
- Bindi, D.; Pacor, F.; Luzi, L.; Puglia, R.; Massa, M.; Ameri, G.; Paolucci, R. Ground motion prediction equations derived from the Italian strong motion database. Bull. Earthq. Eng. 2011, 9, 1899–1920. [Google Scholar] [CrossRef]
Discontinuities Trace Digitisation | Scar Geometry Reconstruction | ||
---|---|---|---|
Strike | Dip direction—dip (°) | Strike | Dip direction—dip (°) |
NW–SE (K1) | 035/77 | NW–SE (S1) | 038/64 |
NE–SW (K2) | 126/88 | NE–SW (S2) | 122/81 |
N–S (K3) | 096/66 | N–S (S3) | 089/79 |
NNW–SSE (K4) | 068/40 | NNW–SSE (Ss) | 069/44 |
Octree Level | Max Distance at 95% | Min Points per Facet | Max Edge Length |
---|---|---|---|
8 (grid step = 0.33) | 0.169 | 500 | 300 |
Parameter | Unit | Value | Source |
---|---|---|---|
Uniaxial compressive strength | MPa | 41.5 | laboratory tests |
Rock unit weight | kN/m3 | 25.5 | laboratory tests |
D | - | 1 | - |
GSI | - | 70 | field data |
mi | - | 8 | [50] |
φr | deg. | 31 | [17] |
ω | deg. | 5.5 | VOM analysis |
JRC0 | - | 2.8 | field data |
JCS0 | MPa | 84.4 | field data |
JRCn | - | 2.2 | - |
JCSn | MPa | 61.0 | - |
Parameter | Unit | Min Value | Max Value | Min FS | Max FS | Variability (%) |
---|---|---|---|---|---|---|
σci | MPa | 26.3 | 59.4 | 1.06 | 1.23 | 15.0 |
GSI | - | 65 | 75 | 1.06 | 1.25 | 16.8 |
ω | deg. | 0 | 7.5 | 0.93 | 1.21 | 24.8 |
JRC0 | - | 0.9 | 5.3 | 1 | 1.59 | 48.8 |
JCS0 | MPa | 31.9 | 123.2 | 1.16 | 1.23 | 5.8 |
JRCn | - | 0.8 | 3.5- | 0.99 | 1.29 | 26.5 |
JCSn | MPa | 23.0 | 89.0- | 1.09 | 1.15 | 5.3 |
Accounted Discontinuity Sets | FS Value | Variation (%) |
---|---|---|
S1 + S2 + S3 | 1.13 | 0 |
S2 + S3 | 1.03 | −8.8 |
S1 + S3 | 0.65 | −42.5 |
S1 + S2 | 1.07 | −6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schilirò, L.; Massaro, L.; Forte, G.; Santo, A.; Tommasi, P. Analysis of Earthquake-Triggered Landslides through an Integrated Unmanned Aerial Vehicle-Based Approach: A Case Study from Central Italy. Remote Sens. 2024, 16, 93. https://doi.org/10.3390/rs16010093
Schilirò L, Massaro L, Forte G, Santo A, Tommasi P. Analysis of Earthquake-Triggered Landslides through an Integrated Unmanned Aerial Vehicle-Based Approach: A Case Study from Central Italy. Remote Sensing. 2024; 16(1):93. https://doi.org/10.3390/rs16010093
Chicago/Turabian StyleSchilirò, Luca, Luigi Massaro, Giovanni Forte, Antonio Santo, and Paolo Tommasi. 2024. "Analysis of Earthquake-Triggered Landslides through an Integrated Unmanned Aerial Vehicle-Based Approach: A Case Study from Central Italy" Remote Sensing 16, no. 1: 93. https://doi.org/10.3390/rs16010093
APA StyleSchilirò, L., Massaro, L., Forte, G., Santo, A., & Tommasi, P. (2024). Analysis of Earthquake-Triggered Landslides through an Integrated Unmanned Aerial Vehicle-Based Approach: A Case Study from Central Italy. Remote Sensing, 16(1), 93. https://doi.org/10.3390/rs16010093