Long-Term Monitoring of Inland Water Quality Parameters Using Landsat Time-Series and Back-Propagated ANN: Assessment and Usability in a Real-Case Scenario
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.4. Implementation
3. Results
4. Discussion
4.1. Proposed Model for WQP Monitoring
4.2. Usability of the Developed Model in a Real-Case Scenario: Dobrodol Water Reservoir
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. 21 October 2015. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 5 December 2022).
- United Nations. Goal 6: Ensure Access to Water and Sanitation for All; UN: New York, NY, USA, 2018. [Google Scholar]
- European Parliament. Directive 2000/60/EC—Framework for Community Action in the Field of Water Policy; European Parliament: Bruxelles, Belgium, 2003. [Google Scholar]
- European Communities. Guidance Document n.o 7 Monitoring under the Water Framework Directive; Office for Official Publica-tions of the European Communities: Luxembourg, 2003. [Google Scholar]
- He, J.; Chen, Y.; Wu, J.; Stow, D.A.; Christakos, G. Space-Time Chlorophyll-a Retrieval in Optically Complex Waters that Accounts for Remote Sensing and Modeling Uncertainties and Improves Remote Estimation Accuracy. Water Res. 2019, 171, 115403. [Google Scholar] [CrossRef]
- Nas, B.; Ekercin, S.; Karabörk, H.; Berktay, A.; Mulla, D.J. An Application of Landsat-5TM Image Data for Water Quality Mapping in Lake Beysehir, Turkey. Water Air Soil Pollut. 2010, 212, 183–197. [Google Scholar] [CrossRef]
- Govedarica, M.; Jakovljevic, G. Monitoring spatial and temporal variation of water quality parameters using time series of open multispectral data. In Proceedings of the SPIE 11174 Seventh International Conference on Remote Sensing and Geoinformation of the Environment, Paphos, Cyprus, 18–21 March 2019. [Google Scholar]
- Wu, C.; Wu, J.; Qi, J.; Zhang, L.; Huang, H.; Lou, L.; Chen, Y. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Ha, N.; Koike, K.; Nhuan, M. Improved Accuracy of Chlorophyll-a Concentration Estimates from MODIS Imagery Using a Two-Band Ratio Algorithm and Geostatistics: As Applied to the Monitoring of Eutrophication Processes over Tien Yen Bay (Norther Vietnam). Remote Sens. 2013, 6, 421–442. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Liu, M.; He, J.; Shi, K.; Wang, M.; Yu, Z. Thermal structure and response to long-term climatic changes in Lake Qiandaohu, a deep subtropical reservoir in China. Limnol. Oceanogr. 2014, 59, 1193–1202. [Google Scholar] [CrossRef]
- Brezonik, P.L.; Olmanson, L.G.; Finlay, J.C.; Bauer, M.E. Factors Affecting the Measurement of CDOM by Remote Sensing of Optically Complex Inland Waters. Remote Sens. Environ. 2015, 157, 199–215. [Google Scholar] [CrossRef]
- Shahzad, M.I.; Meraj, M.; Nazeer, M.; Zia, I.; Inam, A.; Mehmood, K.; Zafar, H. Empirical Estimation of Suspended Solids Concentration in the Indus Delta Region Using Landsat-7 ETM+ Imagery. J. Environ. Manag. 2018, 209, 254–261. [Google Scholar] [CrossRef]
- Bonansea, M.; Rodriguez, M.C.; Pinotti, L.; Ferrero, S. Using multitemporal Landsat imagery and linear mixed models for assessing water quality parameters in Río Tercero reservoir (Argentina). Remote Sens. Environ. 2015, 158, 28–41. [Google Scholar] [CrossRef]
- Lim, J.; Choi, M. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environ. Monit. Assess. 2015, 187, 1–7. [Google Scholar] [CrossRef]
- Ekercin, S. Water Quality Retrievals from High Resolution Ikonos Multispectral Imagery: A Case Study in Istanbul, Turkey. Water Air Soil Pollut. 2007, 183, 239–251. [Google Scholar] [CrossRef]
- Din, E.S.E.; Zhang, Y.; Suliman, A. Mapping concentrations of surface water quality parameters using a novel remote sensing and artificial intelligence framework. Int. J. Remote Sens. 2017, 38, 1023–1042. [Google Scholar] [CrossRef]
- Umar, M.; Rhoads, B.L.; Greenberg, J.A. Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences. J. Hydrol. 2018, 556, 325–338. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, R.; Li, J.; Hua, Z.; Wang, J.; Zhang, R.; Liang, Y.; Tang, Y. Remote Sensing Retrieval of Total Nitrogen in the Pearl River Delta Based on Landsat8. Water 2022, 14, 3710. [Google Scholar] [CrossRef]
- Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.E.; Abbas, S.; Tang, D.; Lee, K.-H.; Pun, L. Comparison of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study of Hong Kong. Remote Sens. 2019, 11, 617. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Shi, K.; Zhu, G.; Zhuo, Y.; Zhang, Y.; Guo, Y. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Sci. Total. Environ. 2017, 599, 1705–1717. [Google Scholar] [CrossRef]
- Vakili, T.; Amanollahi, J. Determination of optically inactive water quality variables using Landsat 8 data: A case study in Geshlagh reservoir affected by agricultural land use. J. Clean. Prod. 2019, 247, 119134. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.J.; Zhu, X.; Wang, B.; Tian, S.; Xu, W.; Mai, Y. A generalized machine learning approach for dissolved oxygen estimation at multiple spatiotemporal scales using remote sensing. Environ. Pollut. 2021, 288, 117734. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Liu, H.; Qian, L.; Bauer, J.; Xue, X.; Yu, G.; He, Q.; Zhou, Q.; Bi, Y.; Norra, S. Water quality monitoring and assessment based on cruise monitoring, remote sensing, and deep learning: A case study of Qingcaosha Reservoir. Front. Environ. Sci. 2022, 10, 979133. [Google Scholar] [CrossRef]
- Guo, H.; Huang, J.J.; Chen, B.; Guo, X.; Singh, V.P. A machine learning-based strategy for estimating non-optically active water quality parameters using Sentinel-2 imagery. Int. J. Remote Sens. 2020, 42, 1841–1866. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Land-sat-8/Sentinel-2 virtual constellation and cloud computing. Giscience Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Leggesse, E.S.; Zimale, F.A.; Sultan, D.; Enku, T.; Srinivasan, R.; Tilahun, S.A. Predicting Optical Water Quality Indicators from Remote Sensing Using Machine Learning Algorithms in Tropical Highlands of Ethiopia. Hydrology 2023, 10, 110. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. A new approach to monitor water quality in the Menor sea (Spain) using satellite data and machine learning methods. Environ. Pollut. 2021, 286, 117489. [Google Scholar] [CrossRef] [PubMed]
- Balabin, R.M.; Lomakina, E.I. Support vector machine regression (SVR/LS-SVM)—An alternative to neural networks (ANN) for analytical chemistry? Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 2011, 136, 1703–1710. [Google Scholar] [CrossRef] [PubMed]
- Jakovljevic, G.; Govedarica, M.; Alvarez-Taboada, F. Water body mapping: A comparison of remotely sensed and GIS open data sources. Int. J. Remote Sens. 2018, 40, 2936–2964. [Google Scholar] [CrossRef]
- Nolan, B.T.; Fienen, M.N.; Lorenz, D.L. A statistical learning framework for groundwater nitrate models of the Central Valley, California, USA. J. Hydrol. 2015, 531, 902–911. [Google Scholar] [CrossRef]
- Singh, K.P.; Basant, N.; Gupta, S. Support vector machines in water quality management. Anal. Chim. Acta 2011, 703, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lu, J. Support vector machine―An alternative to artificial neuron network for water quality forecasting in an agricultural nonpoint source polluted river? Environ. Sci. Pollut. Res. 2014, 21, 11036–11053. [Google Scholar] [CrossRef]
- Kim, Y.H.; Im, J.; Ha, H.K.; Choi, J.-K.; Ha, S. Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GIScience Remote Sens. 2014, 51, 158–174. [Google Scholar] [CrossRef]
- Li, M.; Im, J.; Beier, C. Machine learning approaches for forest classification and change analysis using multitemporal Landsat TM images over Huntington Wildlife Forest. GIScience Remote Sens. 2013, 50, 361–384. [Google Scholar] [CrossRef]
- Ramezan, C.A.; Warner, T.A.; Maxwell, A.E.; Price, B.S. Effects of Training Set Size on Supervised Machine-Learning Land-Cover Classification of Large-Area High-Resolution Remotely Sensed Data. Remote Sens. 2021, 13, 368. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, K.; Cheng, S.; Zhao, L.; Yang, K. Regional Remote Sensing od Lake Water Transparency Based on Google Earth Engine: Preformance of Empircal Algorithm and Machine Learning. Appl. Sci. 2023, 13, 4007. [Google Scholar] [CrossRef]
- Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-Quality Classification of Inland Lakes Using Landsat8 Images by Convolutional Neural Networks. Remote Sens. 2019, 11, 1674. [Google Scholar] [CrossRef]
- Cui, Y.; Yan, Z.; Wang, J.; Hao, S.; Liu, Y. Deep learning–based remote sensing estimation of water transparency in shallow lakes by combining Landsat 8 and Sentinel 2 images. Environ. Sci. Pollut. Res. 2021, 29, 4401–4413. [Google Scholar] [CrossRef] [PubMed]
- Aptoula, E.; Ariman, S. Chlorophyll-a Retrieval from Sentinel-2 Images Using Convolutional Neural Network Regression. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Sl Glasnik RS br 96/2010. Pravilnik o Utvrđivanju Vodnih tela Površinskih i Podzemnih Voda; Sl glasnik RS: Beograd, Serbia, 2010. [Google Scholar]
- Agencija za zastitu zivotne sredine. Ministarstvo za Zaštitu Životne Sredine Status Površinskih voda Srbije u Periodu od 2017–2019; Agencija za zastitu zivotne sredine: Beograd, Serbia, 2021. [Google Scholar]
- European Environment Agency. WISE. Available online: https://water.europa.eu/#:~:text=The%20Water%20Information%20System%20for,from%20inland%20waters%20to%20marine (accessed on 1 December 2022).
- European Environment Agency. Eionet. Available online: https://dd.eionet.europa.eu/tables/11122 (accessed on 1 December 2022).
- USGS. Landsat 4-7 Collection 1 Surface Reflectance Code LEDAPS Product Guide. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/LSDS-1370_L4-7_C1-SurfaceReflectance-LEDAPS_ProductGuide-v3.pdf (accessed on 25 November 2022).
- Wulder, M.A.; Roy, D.P.; Radeloff, V.C.; Loveland, T.R.; Anderson, M.C.; Johnson, D.M.; Healey, S.; Zhu, Z.; Scambos, T.A.; Pahlevan, N.; et al. Fifty years of Landsat science and impacts. Remote Sens. Environ. 2022, 280. [Google Scholar] [CrossRef]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef]
- Mishra, N.; Helder, D.; Barsi, J.; Markham, B. Continuous calibration improvement in solar reflective bands: Landsat 5 through Landsat 8. Remote Sens. Environ. 2016, 185, 7–15. [Google Scholar] [CrossRef]
- Yang, H.; Kong, J.; Hu, H.; Du, Y.; Gao, M.; Chen, F. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sens. 2022, 14, 1770. [Google Scholar] [CrossRef]
- Richter, R.; Schläpfer, D. Atmospheric/Topographic Correction for Satellite Imagery: ATCOR-2/3 UserGuide; DLR: Wessling, Germany, 2011. [Google Scholar]
- Mayer, B.; Kylling, A. Technical note: The libRadtran software package for radiative transfer calculations—description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef]
- ESA. Level-2A Algorithm Overview. Available online: https://earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (accessed on 15 August 2020).
- Fausset, L.V. Fundamentals of Neural Networks: Architectures, Algorithms and Applications; Pearson: New York, NY, USA, 1993. [Google Scholar]
- Krasnopolsky, V.; Gemmill, W.; Breaker, L. A neural network multipara meter algorithm for SSM/I ocean retrievals: Comparisons and validations. Remote Sens. Environ. 2000, 72, 133–142. [Google Scholar] [CrossRef]
- Vohland, M.; Besold, J.; Hill, J.; Fründ, H.-C. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma 2011, 166, 198–205. [Google Scholar] [CrossRef]
- Liang, Y.; Yin, F.; Xie, D.; Liu, L.; Zhang, Y.; Ashraf, T. Inversion and Monitoring of the TP Concentration in Taihu Lake Using the Landsat-8 and Sentinel-2 Images. Remote Sens. 2022, 14, 6284. [Google Scholar] [CrossRef]
- S. R. b. 74/2011. Uredba o klasifikaciji Voda; Sluzbeni glasnik RS: Beograd, Serbia, 1968. [Google Scholar]
- S. R. b. 50/2012. Uredba o Graničnim Vrednostima Zagađujućih Materija u Površinskim i Podzemnim Vodama i Sedimentu i Rokovima za Njihovo Dostizanje; Sluzbeni Glasnik: Beograd, Serbia, 2012. [Google Scholar]
- S. R. b. 74/2011. Pravilnik o Parametrima Ekološkog i Hemijskog Statusa Površinskih Voda i Parametrima Hemijskog i Kvantitativnog Statusa Podzemnih Voda; Sluzbeni Glasnik: Beograd, Serbia, 2011. [Google Scholar]
- Miller, R.L.; McKeen, B.A. Using MODIS Terra 250 m Imagery to Map Concentrations of Total Suspended Matter in Coastal Waters. Remote Sens. Environ. 2004, 93, 259–266. [Google Scholar] [CrossRef]
- Sadeghi, A.; Dinter, T.; Vountas, M.; Taylor, B.B.; Altenburg-Soppa, M.; Peeken, I.; Bracher, A. Improvement to the PhytoDOAS method for identification of coccolithophores using hyperspectral satellite data. Ocean Sci. 2012, 8, 1055–1070. [Google Scholar] [CrossRef]
- Barraza-Moraga, F.; Alcayaga, H.; Pizarro, A.; Félez-Bernal, J.; Urrutia, R. Estimation of Chlorophyll-a Concentrations in Lanalhue Lake Using Sentinel-2 MSI Satellite Images. Remote Sens. 2022, 14, 5647. [Google Scholar] [CrossRef]
- Roman, A.; Tovar-Sanchez, A.; Gauci, A.; Deidun, A.; Cabellero, I.; Colica, E.; D’Amivo, S.; Navarro, G. Water-Quality Moni-toring with a UAV-Mounted Multispectral Camera in Coastal Waters. Remote Sens. 2023, 15, 237. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Y.; Chen, Y.; Qiao, X.; Qian, W. Water Chlorophyll a Estimation Using UAV-Based Multispectral Data and Machine Learning. Drones 2023, 7, 2. [Google Scholar] [CrossRef]
- Quang, N.H.; Dinh, N.T.; Dien, N.R.; Son, L.T. Calibration of Sentinel-2 Surface Reflectance for Water Quality Modelling in Binh Dinh’s Coastal Zone of Vietnam. Sustainability 2023, 15, 1410. [Google Scholar] [CrossRef]
- Yang, H.; Du, Y.; Zhao, H.; Chen, F. Water Quality Chl-a Inversion Based on Spatio-Temporal Fusion and Convolutional Neural Network. Remote Sens. 2022, 14, 1267. [Google Scholar] [CrossRef]
- Chebud, Y.A.; Naja, G.M.; Rivero, R.G.; Melessa, A.M. Water Quality Monitoring Using Remote Sensing and an Artificial Neural Network. Water Air Soil Pollut. 2012, 223, 4875–4887. [Google Scholar] [CrossRef]
- Ahmed, M.; Mumtaz, R.; Anwar, Z.; Shaukat, A.; Arif, O.; Shafait, F. A Multi–Step Approach for Optically Active and Inactive Water Quality Parameter Estimation Using Deep Learning and Remote Sensing. Water 2022, 14, 2112. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. arXiv 2014, arXiv:1404.7828v4. [Google Scholar] [CrossRef] [PubMed]
- Prechelt, L. Early Stopping—But When. In Neural Networks: Tricks of the Trade; Springer: Berlin, Germany, 2012; pp. 53–67. [Google Scholar]
- SEPA. Stanje Kvaliteta Vode Vodotoka. Agencija za Životnu Sredinu. Available online: http://77.46.150.213:8080/apex/f?p=406:2:::::: (accessed on 15 October 2023).
- Seyhan, E.; Dekker, A. Application of remote sensing techniques for water quality monitoring. Aquat. Ecol. 1986, 20, 41–50. [Google Scholar] [CrossRef]
Author | Platform | WQP | Spectral Bands | Algorithm | Accuracy |
---|---|---|---|---|---|
[14] | Landsat 8 | chl-a | R, G | ||
[15] | Landsat 8 | chl-a | B, G, R, NIR, NIR/R | MLR | R2 = 0.77 |
TSS | G, NIR, NIR/R | R2 = 0.78 | |||
TN | G, R, NIR | R2 = 0.55 | |||
TP | B, G, R, NIR | R2 = 0.57 | |||
[6] | Landsat 5 | chl-a | NIR, NIR/B | LR | R2 = 0.6 |
TSS | R | R2 = 0.67 | |||
[16] | Ikonos 2 | chl-a | B, G | ||
TSS | G, R | ||||
[17] | Landsat 8 | chl-a | B, G, R, NIR, SWIR1, SWIR2 | ||
[18] | Landsat 5 | TSS | R/G, NIR, R | RF | |
[19] | Landsat 8 | TN | (B + R)/G, Coastal/NIR, G/NIR | MLR | R2 = 0.75 |
[20] | Landsat 5, 7, 8 | chl-a | B, G, R, NIR, R/B2, NIR/B2 | ANN | R2 = 0.89 |
SS | B, G, R, NIR, R2, R/B, B*R, G*R | R2 = 0.93 | |||
[21] | Landsat 8 | TN | R/(G + NIR) | LR | R2 = 0.71 |
TP | (Coastal + G + R)/NIR | R2 = 0.66 | |||
[22] | Landsat 8 | TN | R, G/B | ANN | R2 = 0.86 |
TP | G, G/B | R2 = 0.64 |
Sensor | Start Date | End Date | Number of Images |
---|---|---|---|
Landsat 5 TM | 19 March 1984. | 29 September 2015. | 99,319 |
Landsat 7 ETM+ | 30 June 1999. | 31 December 2021. | 76,224 |
Landsat 8 OLI | 21 March 2013. | 31 December 2021. | 37,574 |
Class/Parameter | chl-a | DO | TSS | TN | TP |
---|---|---|---|---|---|
I (High) | 0–25 | 8.5> | 0–25 | <1 | 0–0.05 |
II (Good) | 25–50 | 7–8.5 | 25- | 1–2 | 0.05–0.30 |
III (Moderate) | 50–100 | 5–7 | - | 2–8 | 0.30–0.40 |
IV (Poor) | 100–250 | 4–5 | - | 8–15 | 0.40–1 |
V (Bad) | >250 | <4 | - | >15 | >1 |
Parameter | Dataset Size | ANN Architecture | Input | Epoch | Optimizer | Loss | Min | Max |
---|---|---|---|---|---|---|---|---|
chl-a | 3450 | 9-20-15-20-6-1 | B, G, G/B, R/B2, G/SWIR | 438 | RMSprop | MSE | 0 | 45 |
DO | 11,585 | 128-32-8-1 | SWIR2, NDWI, NDTU, GSWIR, NIR/R, R/G, R/(B + NIR), R-NIR, B-NIR | 684 | Adam | MSE | 0.2 | 23.8 |
TSS | 11,078 | 128-32-16-8-1 | B, G, R, NDTU, G/SWIR, G/R, R/G, I2, R-NIR, B*R, G*R | 1500 | Adam | MSE | 0.1 | 260 |
TN | 12,307 | 128-32-8-1 | B, G, NIR, SWIR, B/R, G/SWIR, G/R, R/G, (NIR + R)/G, (B + R + NIR)/G, R-NIR, R + NIR, B-NIR | 1043 | Adam | MSE | 0.0008 | 8.96 |
TP | 12,164 | 128-32-8-1 | NIR, G/SWIR, R-NIR | 310 | Adam | MSE | 0.0008 | 3.0 |
Parameter | Training | Validation | RMSE | NRMSE [%] | ||
---|---|---|---|---|---|---|
MAE | MSE | MAE | MSE | |||
chl-a [µg/L] | 0.065 | 0.023 | 0.083 | 0.070 | 0.34 | 0.79 |
DO [mg/L] | 0.040 | 0.008 | 0.052 | 0.024 | 0.35 | 0.93 |
TSS [mg/L] | 0.951 | 6.566 | 1.049 | 13.749 | 1.89 | 0.72 |
TN [mg/L] | 0.084 | 0.040 | 0.065 | 0.020 | 0.14 | 1.61 |
TP [mg/L] | 0.015 | 0.003 | 0.015 | 0.0024 | 0.04 | 1.38 |
Month | Date | TSS | DO | TN | TP | ||||
---|---|---|---|---|---|---|---|---|---|
M (C) | P (C) | M (C) | P (C) | M (C) | P (C) | M (C) | P (C) | ||
March | 8 | 4.4 (I) | 7.5 (II) | 1.9 (II) | 0.051 (II) | ||||
18 | 6 (I) | 11.4 (I) | 1.5 (II) | 0.111 (II) | |||||
April | 15 | 17 (I) | 10.8 (I) | 1.5 (II) | 0.057 (II) | ||||
25 | 17.6 (I) | 15 (I) | 1.6 (II) | 0.046 (I) | |||||
May | 11 | 18.8 (I) | 14.6 (I) | 1.8 (II) | 0.038 (I) | ||||
20 | 9 (I) | 9.6 (I) | 1.1 (II) | 0.031 (I) | |||||
June | 3 | 15.8 (I) | 8.6 (I) | 1.9 (II) | 0.092 (II) | ||||
12 | 18.9 (I) | 8.9 (I) | 1.1 (II) | 0.290 (II) | |||||
17 | 20 (I) | 7.7 (II) | 1 (II) | 0.246 (II) | |||||
19 | 21 (I) | 12 (I) | 1.3 (II) | 0.300 (II) | |||||
28 | 17.9 (I) | 13.8 (I) | 1.1 (II) | 0.310 (III) | |||||
July | 14 | 5.6 (I) | 7.9 (II) | 1.8 (II) | 0.320 (III) | ||||
15 | 4 (I) | 6.5 (III) | 1.5 (II) | 0.235 (II) | |||||
31 | 3.57 (I) | 9.8 (I) | 1.9 (II) | 0.279 (II) | |||||
August | 15 | 17.5 (I) | 7.3 (II) | 1.9 (II) | 0.450 (IV) | ||||
19 | 7 (I) | 6.2 (III) | 1.5 (II) | 0.456 (IV) | |||||
22 | 11.8 (I) | 9.5 (I) | 1.6 (II) | 0.500 (IV) | |||||
September | 9 | 14.4 (I) | 13.2 (I) | 1.6 (II) | 0.076 (II) | ||||
16 | 8 (I) | 7.7 (II) | 1.2 (II) | 0.18 (II) | |||||
October | 3 | 15.1 (I) | 16.9 (I) | 1.9 (II) | 0.064 (II) | ||||
21 | 16 (I) | 9.5 (I) | 1.4 (II) | 0.166 (II) | |||||
25 | 15.5 (I) | 15.1 (I) | 1.4 (II) | 0.054 (II) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jakovljevic, G.; Álvarez-Taboada, F.; Govedarica, M. Long-Term Monitoring of Inland Water Quality Parameters Using Landsat Time-Series and Back-Propagated ANN: Assessment and Usability in a Real-Case Scenario. Remote Sens. 2024, 16, 68. https://doi.org/10.3390/rs16010068
Jakovljevic G, Álvarez-Taboada F, Govedarica M. Long-Term Monitoring of Inland Water Quality Parameters Using Landsat Time-Series and Back-Propagated ANN: Assessment and Usability in a Real-Case Scenario. Remote Sensing. 2024; 16(1):68. https://doi.org/10.3390/rs16010068
Chicago/Turabian StyleJakovljevic, Gordana, Flor Álvarez-Taboada, and Miro Govedarica. 2024. "Long-Term Monitoring of Inland Water Quality Parameters Using Landsat Time-Series and Back-Propagated ANN: Assessment and Usability in a Real-Case Scenario" Remote Sensing 16, no. 1: 68. https://doi.org/10.3390/rs16010068
APA StyleJakovljevic, G., Álvarez-Taboada, F., & Govedarica, M. (2024). Long-Term Monitoring of Inland Water Quality Parameters Using Landsat Time-Series and Back-Propagated ANN: Assessment and Usability in a Real-Case Scenario. Remote Sensing, 16(1), 68. https://doi.org/10.3390/rs16010068