Comparative Study on Predicting Topography from Gravity Anomaly and Gravity Gradient Anomaly
Abstract
:1. Introduction
2. Method and Theory
2.1. Establishment of Observation Equations
2.2. Identification and Reduction Interference Errors
2.3. Cubic Spline Interpolation Algorithm for Fusing Ship Soundings
3. Application to Different Sea Depths
3.1. VG and VGG Anomalies Data
3.2. Ship Soundings Data
3.3. Evaluation of the Results
3.4. Fusion of Ship Soundings
4. Discussion
4.1. Correlation Analysis of Gravity and Topography
4.2. Comparison between Spatial and S&S Algorithm
4.3. Data Precision and Prediction Algorithm
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. The Local Coordinate System
Appendix A.2. The Expansion Expression of VG
Appendix A.3. Expansion Expression of VGG
Appendix A.4. Statistical Table
Appendix A.4.1. Result Statistics of Ship Sounding Fusion
Study Area | η1 | η2 | w | RMSFusing (m) | RMSChecking (m) | RMS (m) | η3 |
Area-1 | 2.62% | 10.09% | 0.20 | 93.49 | 95.99 | 93.74 | 0.06% |
0.40 | 86.16 | 94.58 | 92.76 | 1.11% | |||
0.60 | 76.25 | 92.76 | 91.23 | 2.74% | |||
0.80 | 65.74 | 90.96 | 88.74 | 5.39% | |||
1.00 | 55.88 | 89.40 | 86.61 | 7.67% | |||
8.72% | 33.53% | 0.20 | 90.53 | 95.73 | 91.02 | 2.96% | |
0.40 | 80.97 | 91.76 | 88.29 | 5.87% | |||
0.60 | 69.69 | 87.37 | 81.87 | 12.72% | |||
0.80 | 58.86 | 83.48 | 76.12 | 18.85% | |||
1.00 | 49.37 | 80.34 | 71.47 | 23.81% | |||
13.04% | 50.15% | 0.20 | 92.32 | 92.78 | 92.55 | 1.33% | |
0.40 | 80.17 | 88.06 | 84.20 | 10.23% | |||
0.60 | 67.18 | 83.27 | 75.63 | 19.37% | |||
0.80 | 55.63 | 79.23 | 68.42 | 27.06% | |||
1.00 | 46.12 | 76.05 | 62.85 | 33.00% | |||
17.28% | 66.47% | 0.20 | 91.70 | 91.13 | 91.51 | 2.44% | |
0.40 | 79.18 | 83.99 | 80.82 | 13.84% | |||
0.60 | 65.90 | 76.77 | 69.73 | 25.66% | |||
0.80 | 54.28 | 70.64 | 60.26 | 35.76% | |||
1.00 | 44.82 | 65.77 | 52.78 | 43.73% | |||
23.38% | 89.91% | 0.20 | 89.78 | 91.88 | 89.99 | 4.06% | |
0.40 | 76.09 | 83.25 | 76.84 | 18.08% | |||
0.60 | 62.33 | 74.53 | 63.67 | 32.12% | |||
0.80 | 50.72 | 66.88 | 52.58 | 43.94% | |||
1.00 | 41.62 | 60.55 | 43.90 | 53.20% | |||
Area-2 | 3.24% | 10.22% | 0.20 | 205.43 | 229.33 | 227.01 | 2.90% |
0.40 | 189.25 | 228.74 | 225.03 | 3.75% | |||
0.60 | 167.46 | 228.10 | 222.67 | 4.76% | |||
0.80 | 144.40 | 227.61 | 220.57 | 5.66% | |||
1.00 | 122.84 | 227.35 | 218.99 | 6.33% | |||
10.65% | 33.58% | 0.20 | 216.13 | 229.11 | 224.85 | 3.83% | |
0.40 | 198.51 | 226.39 | 217.45 | 6.99% | |||
0.60 | 175.56 | 223.26 | 208.50 | 10.82% | |||
0.80 | 152.05 | 220.51 | 200.20 | 14.37% | |||
1.00 | 130.65 | 218.40 | 193.49 | 17.24% | |||
15.90% | 50.00% | 0.20 | 204.18 | 241.40 | 223.56 | 4.38% | |
0.40 | 185.68 | 237.67 | 213.26 | 8.79% | |||
0.60 | 162.36 | 233.78 | 201.26 | 13.92% | |||
0.80 | 139.11 | 230.79 | 190.55 | 18.50% | |||
1.00 | 118.38 | 228.88 | 182.21 | 22.07% | |||
21.06% | 66.42% | 0.20 | 221.56 | 220.70 | 221.27 | 5.36% | |
0.40 | 200.83 | 216.23 | 206.11 | 11.84% | |||
0.60 | 176.70 | 212.24 | 189.35 | 19.01% | |||
0.80 | 154.23 | 209.56 | 174.73 | 25.27% | |||
1.00 | 135.21 | 207.99 | 163.24 | 30.18% | |||
28.47% | 89.78% | 0.20 | 220.31 | 209.32 | 219.22 | 6.24% | |
0.40 | 198.84 | 205.04 | 199.48 | 14.68% | |||
0.60 | 174.53 | 201.27 | 177.44 | 24.11% | |||
0.80 | 152.16 | 198.58 | 157.52 | 32.63% | |||
1.00 | 133.25 | 196.83 | 141.05 | 39.67% |
Appendix A.4.2. Data statistics of topography and gravity models
Data Statistics of Topography and Gravity Models | |||||
Sea Area-1 | Data Category | Min | Max | Range | SD |
TopoVG1 (m) | −2057.7 | −1485.1 | 572.6 | 122.9 | |
TopoVGG1 (m) | −2023.9 | −1631.9 | 392 | 76.2 | |
ModelVG1 (mGal) | −10.7 | 32.0 | 42.7 | 8.0 | |
ModelVGG1 (Eötvös) | −26.6 | 31.7 | 58.3 | 10.5 | |
Sea Area-2 | TopoVG2 (m) | −4965.7 | −3587.7 | 1378.0 | 245.1 |
TopoVGG2 (m) | −5027.5 | −3559.7 | 1468.5 | 284.8 | |
ModelVG2 (mGal) | 2.9 | 47.0 | 44.1 | 8.8 | |
ModelVGG2 (Eötvös) | −39.2 | 44.8 | 84.0 | 12.8 |
Appendix A.5. The Effect of Resolution on Prediction Results
References
- Andersen, O.B.; Knudsen, P. The DTU10 global Mean sea surface and Bathymetry. In Presented EGU-2008; EGU: Vienna, Austria, 2008. [Google Scholar]
- Weatherall, P.; Tozer, B.; Arndt, J.E.; Bazhenova, E.; Bringensparr, C.; Castro, C.; Dorschel, B.; Ferrini, V.; Hehemann, L.; Jakobsson, M.; et al. The GEBCO_2021 Grid—A Continuous Terrain Model of the Global Oceans and Land; British Oceanographic Data Centre NOC: Southampton, UK, 2021. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.; Gille, S.; Kappel, E.; Jayne, S.; Soofi, K.; Coakley, B.; Géli, L. Bathymetry from space: Rationale and requirements for a new, high-resolution altimetric mission. Comptes Rendus Geosci. 2006, 338, 1049–1062. [Google Scholar] [CrossRef]
- Hwang, C. A Bathymetric Model for the South China Sea from Satellite Altimetry and Depth Data. Mar. Geod. 1999, 22, 37–51. [Google Scholar] [CrossRef]
- Hsiao, Y.S.; Hwang, C.; Cheng, Y.S.; Chen, L.C.; Hsu, H.J.; Tsai, J.H.; Liu, C.L.; Wang, C.C.; Liu, Y.C.; Kao, Y.C. High-resolution depth and coastline over major atolls of South China Sea from satellite altimetry and imagery. Remote Sens. Environ. 2016, 176, 69–83. [Google Scholar] [CrossRef]
- Kim, J.W.; Frese, R.R.B.V.; Lee, B.Y.; Roman, D.R.; Doh, S. Altimetry-derived gravity predictions of bathymetry by gravity-geologic method. Pure Appl. Geophys. 2011, 168, 815–826. [Google Scholar] [CrossRef]
- Ibrahim, A.; Hinze, W.J. Mapping buried bedrock topography with gravity. Groundwater 1972, 10, 18–23. [Google Scholar] [CrossRef]
- Kim, K.B.; Yun, H.S. Satellite-derived Bathymetry Prediction in Shallow Waters Using the Gravity-Geologic Method: A Case Study in the West Sea of Korea. KSCE J. Civ. Eng. 2017, 22, 2560–2568. [Google Scholar] [CrossRef]
- Ramillien, G.; Cazenave, A. Global bathymetry derived from altimeter date of the Ers-1 geodetic mission. J. Geodyn. 1997, 23, 129–149. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Global sea floor topography from satellite altimetry and ship depth soundings. Science 1977, 277, 1956–1962. [Google Scholar] [CrossRef]
- Kim, K.B.; Hsiao, Y.S.; Kim, J.W.; Lee, B.Y.; Kwon, Y.K.; Kim, C.H. Bathymetry enhancement by altimetry-derived gravity anomaly in the East Sea (Sea of Japan). Mar. Geophys. Res. 2010, 31, 285–298. [Google Scholar] [CrossRef]
- Hwang, C.; Lee, B.Y.; Kim, K.B.; Kim, J.W.; Hsiao, Y.S. Bathymetry estimation using the gravity-geologic method: An investigation of density contrast predicted by the downward continuation method. Terr. Atmos. Ocean. Sci. (TAO) 2011, 22, 347–358. [Google Scholar]
- Hwang, C.; Kao, E.C.; Parson, B. Global derivation of marine gravity anomaly from Seasat, Geosat, ERS-1 and TOPEX/POSEIDON altimeter data. Geophys. J. Int. 1998, 134, 449–459. [Google Scholar] [CrossRef]
- Sandwell, D.T.; McAdoo, D.C. High-accuracy, high-resolution gravity profiles from 2 years of the Geosat exact repeat mission. J. Geophys. Res. Atmos. 1990, 95, 3049–3060. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H.F. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. J. Geophys. Res. 1997, 105, 10039–10054. [Google Scholar] [CrossRef]
- Armon, M.; Dente, E.; Shmilovitz, Y.; Mushkin, A.; Cohen, T.J.; Morin, E.; Enzel, Y. Determining bathymetry of shallow and ephemeral desert lakes using satellite imagery and altimetry. Geophys. Res. Lett. 2020, 47, e2020GL087367. [Google Scholar] [CrossRef]
- Richard, P.S.; Kristine, H.; Mark, S. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48, 547–556. [Google Scholar]
- Xu, N.; Ma, X.; Ma, Y.; Zhao, P.; Yang, J.; Wang, X.H. Deriving highly accurate shallow water bathymetry from sentinel-2 and ICESat-2 datasets by a multitemporal stacking method. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2021, 14, 6677–6685. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Towards Routine Mapping of Shallow Bathymetry in Environments with Variable Turbidity: Contribution of Sentinel-2A/B Satellites Mission. Remote. Sens. 2020, 12, 451. [Google Scholar] [CrossRef]
- Li, Y.; Gao, H.; Jasinski, M.F.; Zhang, S.; Stoll, J.D. Deriving High-Resolution Reservoir Bathymetry From ICESat-2 Prototype Photon-Counting Lidar and Landsat Imagery. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 7883–7893. [Google Scholar] [CrossRef]
- Rasheed, S.; Warder, S.C.; Plancherel, Y.; Piggott, M.D. An improved gridded bathymetric data set and tidal model for the maldives archipelago. Earth Space Sci. 2021, 8, e2020EA001207. [Google Scholar] [CrossRef]
- Parker, R.L. The rapid calculation of potential anomaly. Geophys. J. R. Astron. Soc. 1972, 31, 447–455. [Google Scholar] [CrossRef]
- Dixon, T.H.; Naraghi, M.; McNutt, M.K.; Smith, S.M. Bathymetric prediction from SEASAT altimeter data. J. Geophys. Res. Atmos. 1983, 88, 1563–1571. [Google Scholar] [CrossRef]
- Smith, W.H.F.; Sandwell, D.T. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. J. Geophys. Res. 1994, 99, 803–824. [Google Scholar] [CrossRef]
- Wang, Y.M. Predicting bathymetry from the earth’s gravity gradient anomalies. Mar. Geod. 2000, 23, 251–258. [Google Scholar] [CrossRef]
- Nagy, D.; Papp, G.; Benedek, J. The gravitational potential and its derivatives for the prism. J. Geod. 2000, 74, 552–560. [Google Scholar] [CrossRef]
- Yang, J.J.; Jekeli, C.; Liu, L. Seafloor topography estimation from gravity gradients using simulated annealing. J. Geophys. Res. 2018, 123, 6958–6975. [Google Scholar] [CrossRef]
- Yu, J.; Xu, H.; Wan, X. An analytical method to invert the seabed depth from the vertical gravitational gradient. Mar. Geod. 2021, 44, 306–326. [Google Scholar] [CrossRef]
- Becker, J.J.; Sandwell, D.T.; Smith, W.H.F.; Braud, J.; Binder, B.; Depner, J.; Fabre, D.; Factor, J.; Ingalls, S.; Kim, S.-H.; et al. Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS. Mar. Geod. 2009, 32, 355–371. [Google Scholar] [CrossRef]
- Jakobsson, M.; Mayer, L.A.; Bringensparr, C.; Castro, C.F.; Mohammad, R.; Johnson, P.; Ketter, T.; Accettella, D.; Amblas, D.; An, L.; et al. The International Bathymetric Chart of the Arctic Ocean Version 4.0. Sci. Data 2020, 7, 1–14. [Google Scholar] [CrossRef]
- Tozer, B.; Sandwell, D.T.; Smith, W.H.; Olson, C.; Beale, J.R.; Wessel, P. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth Space Sci. 2019, 6, 1847–1864. [Google Scholar] [CrossRef]
- Weatherall, P.; Marks, K.M.; Jakobsson, M.; Schmitt, T.; Tani, S.; Arndt, J.E.; Rovere, M.; Chayes, D.; Ferrini, V.; Wigley, R. A new digital bathymetric model of the world’s oceans. Earth Space Sci. 2015, 2, 331–345. [Google Scholar] [CrossRef]
- Boghosian, A.; Tinto, K.; Cochran, J.R.; Porter, D.; Elieff, S.; Burton, B.L.; Bell, R.E. Resolving bathymetry from airborne gravity along Greenland fjords. J. Geophys. Res. Solid Earth 2015, 120, 8516–8533. [Google Scholar] [CrossRef]
- Fu, L.L.; Alsdorf, D.; Morrow, R.; Rodriguez, E.; Mognard, N. SWOT: The Surface Water and Ocean Topography Mission. 2012. Available online: https://swot.jpl.nasa.gov/system/documents/files/2179_SWOT_MSD_final-3-26-12.pdf (accessed on 18 September 2023).
- Neeck, S.P.; Lindstrom, E.J.; Vaze, P.V.; Fu, L.L. Surface Water and Ocean Topography (SWOT) mission. In Sensors, Systems, and Next-Generation Satellites XVI; SPIE: Washington, DC, USA, 2012. [Google Scholar]
- Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation—GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences 2018, 8, 63. [Google Scholar] [CrossRef]
- Talwani, M. Computer usage in the computation of gravity anomalies. in Geophysics, Methods in Computational Physics: Advances in Research and Applications. Geophysics 1973, 13, 343–389. [Google Scholar]
- Xu, H.; Yu, J. Using an iterative algorithm to predict topography from vertical gravity gradients and ship soundings. Earth Space Sci. 2022, 9, e2022EA002437. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 2014, 346, 65–67. [Google Scholar] [CrossRef] [PubMed]
- Harper, H.; Tozer, B.; Sandwell, D.T.; Hey, R.N. Marine vertical gravity gradients reveal the global distribution and tectonic significance of “seesaw” ridge propagation. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020017. [Google Scholar] [CrossRef]
- Smith, W.H.F. On the accuracy of digital bathymetric data. J. Geophys. Res. 1993, 98, 9591–9603. [Google Scholar] [CrossRef]
- Abulaitijiang, A.; Andersen, O.B.; Sandwell, D. Improved Arctic Ocean bathymetry derived from DTU17 gravity model. Earth Space Sci. 2019, 6, 1336–1347. [Google Scholar] [CrossRef]
- Fan, D.; Li, S.; Meng, S.; Lin, Y.; Xing, Z.; Zhang, C.; Yang, J.; Wan, X.; Qu, Z. Applying Iterative Method to Solving High-Order Terms of Seafloor Topography. Mar. Geod. 2019, 43, 63–85. [Google Scholar] [CrossRef]
- Baudry, N.; Diament, M.; Albouy, Y. Precise location of unsurveyed seamounts in the Austral archipelago area using SEASAT data. Geophys. J. Int. 1987, 89, 869–888. [Google Scholar] [CrossRef]
- Calmant, S.; Baudry, N. Modelling bathymetry by inverting satellite altimetry data:A review. Mar. Geophys. Res. 1995, 18, 123–134. [Google Scholar] [CrossRef]
- Jung, W.Y.; Vogt, P.R. Predicting bathymetry from Geosat-ERM and shipborne profifiles in the South Atlantic Ocean. Tectonophysics 1992, 210, 235–253. [Google Scholar] [CrossRef]
- Watts, A.B.; Sandwell, D.T.; Smith, W.H.F.; Wessel, P. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. J. Geophys. Res. Solid Earth 2006, 111, B08408. [Google Scholar] [CrossRef]
- McKenzie, D.; Bowin, C. The relationship between bathymetry and gravity in the Atlantic Ocean. J. Geophys. Res. 1976, 81, 1903–1915. [Google Scholar] [CrossRef]
- Sichoix, L.; Bonneville, A. Prediction of bathymetry in French Polynesia constrained by shipboard data. Geophys. Res. Lett. 1996, 23, 2469–2472. [Google Scholar] [CrossRef]
- Hubbert, M.K. A line-integral method of computing the gravimetric effects of two-dimensional masses. Geophysics 1948, 13, 215–225. [Google Scholar] [CrossRef]
- Talwani, M.; Worzel, J.L.; Landisman, M. Rapid gravity computations for two-dimensional bodies with application to the Mendocino submarine fracture zone. J. Geophys. Res. 1959, 64, 49–59. [Google Scholar] [CrossRef]
- Talwani, M.; Ewing, M. Rapid Computation of Gravitational Attraction of Three-Dimensional Bodies of Arbitrary Shape. Geophysics 1960, 25, 203–225. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Ellis, R.; Mukherjee, S. Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics 2004, 69, 925–937. [Google Scholar] [CrossRef]
- Martinez, C.; Li, Y.G.; Krahenbuhl, R.; Braga, M.A. 3D inversion of airborne gravity gradiometry data in mineral exploration: A case study in the Quadrilátero Ferrífero, Brazil. Geophysics 2013, 78, B1–B11. [Google Scholar] [CrossRef]
- Geng, M.; Huang, D.N.; Yang, Q.J.; Liu, Y.P. 3D inversion of airborne gravity-gradiometry data using cokriging. Geophysics 2014, 79, G37–G47. [Google Scholar] [CrossRef]
- Qin, P.B.; Huang, D.N. Integrated gravity and gravity gradient data focusing inversion. Chin. J. Geophys. 2016, 56, 2203–2224. (In Chinese) [Google Scholar]
- Pavlis, N.K.; Holmes, S.A.; Kenyon, S.C.; Factor, J.K. An Earth gravitational model to degree 2160: EGM2008. In Proceedings of the 2008 General Assembly of the European Geosciences Union, Vienna, Austria, 13–18 April 2008. [Google Scholar]
- Huan, X.; Jinhai, Y.; Xiaoyun, W.; Lei, L. An expression for gravity generated by an anomalous geological body and its application in bathymetry inversion. J. Geod. Geoinf. Sci. 2021, 4, 63–73. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Goff, J.A.; Gevorgian, J.; Harper, H.; Kim, S.; Yu, Y.; Tozer, B.; Wessel, P.; Smith, W.H.F. Improved Bathymetric Prediction Using Geological Information: SYNBATH. Earth Space Sci. 2022, 9, e2021EA00206. [Google Scholar] [CrossRef]
- Morrow, R.; Fu, L.-L.; Ardhuin, F.; Benkiran, M.; Chapron, B.; Cosme, E.; D’ovidio, F.; Farrar, J.T.; Gille, S.T.; Lapeyre, G.; et al. Global Observations of Fine-Scale Ocean Surface Topography With the Surface Water and Ocean Topography (SWOT) Mission. Front. Mar. Sci. 2019, 6, 232. [Google Scholar] [CrossRef]
- Yu, D.; Hwang, C.; Andersen, O.B.; Chang, E.T.; Gaultier, L. Gravity recovery from SWOT altimetry using geoid height and geoid gradient. Remote. Sens. Environ. 2021, 265, 112650. [Google Scholar] [CrossRef]
- Liu, P.; Wang, M.; Wang, L.; Han, W. Remote-Sensing Image Denoising With Multi-Sourced Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2019, 12, 660–674. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote. Sens. 2020, 59, 2256–2268. [Google Scholar] [CrossRef]
Data Category | Sea Area | Max | Min | Mean | SD |
---|---|---|---|---|---|
VG anomalies (unit: mGal) | Study Area R | 135.4 | 22.5 | 91.4 | 24.8 |
Boundary Area D | 71.3 | 3.4 | 17.0 | 14.5 | |
Far Area W | 27.9 | 5.0 | 9.9 | 4.1 | |
VGG anomalies (unit: Eötvös) | Study Area R | 83.2 | −3.6 | 40.7 | 15.4 |
Boundary Area D | 67.0 | −27.2 | −7.4 | 13.8 | |
Far Area W | −9.3 | −40.4 | −16.9 | 6.0 |
StudyArea | Data Category | VG and VGG Anomalies (Unit: mGal or Eötvös) | Prediction Results (Unit: m) | Prediction Error (Unit: m) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Max | Min | SD | Max-D | Min-D | Mean-D | Max-E | Min-E | RMS-E | ||
Area-1 | VG | 32.0 | −18.3 | 7.9 | −2023.9 | −1632.1 | −1867.6 | 251.8 | −264.5 | 101.2 |
VGG | 47.8 | −41.0 | 11.3 | −2057.7 | −1485.1 | −1850.4 | 130.3 | −324.1 | 93.8 | |
Area-2 | VG | 47.0 | 2.9 | 8.1 | −4962.9 | −3588.6 | −4111.3 | 738.3 | −1017.3 | 239.4 |
VGG | 45.0 | −39.2 | 11.6 | −5027.5 | −3559.7 | −4140.9 | 760.2 | −939.3 | 233.8 |
Pearson Correlation | |||||
---|---|---|---|---|---|
Data Category | Sea Area-1 | Data Category | Sea Area-2 | ||
ModelVG1 | ModelVGG1 | ModelVG2 | ModelVGG2 | ||
TopoVG1 | 0.9751 | 0.9319 | TopoVG2 | 0.9348 | 0.9254 |
TopoVGG1 | 0.9807 | 0.8873 | TopoVGG2 | 0.8837 | 0.8631 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Tian, Y.; Yu, J.; Anderson, O.B.; Wang, Q.; Sun, Z. Comparative Study on Predicting Topography from Gravity Anomaly and Gravity Gradient Anomaly. Remote Sens. 2024, 16, 166. https://doi.org/10.3390/rs16010166
Xu H, Tian Y, Yu J, Anderson OB, Wang Q, Sun Z. Comparative Study on Predicting Topography from Gravity Anomaly and Gravity Gradient Anomaly. Remote Sensing. 2024; 16(1):166. https://doi.org/10.3390/rs16010166
Chicago/Turabian StyleXu, Huan, Yuwei Tian, Jinhai Yu, Ole Baltazar Anderson, Qiuyu Wang, and Zhongmiao Sun. 2024. "Comparative Study on Predicting Topography from Gravity Anomaly and Gravity Gradient Anomaly" Remote Sensing 16, no. 1: 166. https://doi.org/10.3390/rs16010166
APA StyleXu, H., Tian, Y., Yu, J., Anderson, O. B., Wang, Q., & Sun, Z. (2024). Comparative Study on Predicting Topography from Gravity Anomaly and Gravity Gradient Anomaly. Remote Sensing, 16(1), 166. https://doi.org/10.3390/rs16010166