Evaluation of Low-Cost Radiometer for Surface Reflectance Retrieval and Orbital Sensor’s Validation
Abstract
:1. Introduction
2. Materials
2.1. Study Areas
2.2. Arable Mark 2 Sensor
2.3. ASD FieldSpec
2.4. Landsat L8 OLI Multispectral Surface Reflectance
3. Methodology
3.1. Arable Mark 2 Radiometric Calibration with ASD FieldSpec
3.2. Deriving Multispectral Arable Data into Hyperspectral Data and SBAF Correction
3.3. Surface Reflectance Validation of Landsat 8 with Respect to Arable Mark 2 Sensor
4. Uncertainty Analysis
4.1. Uncertanties in Arable Mark 2 Radiometric Calibration
4.2. Uncertanties in the Automated Process for Deriving Multispectral Arable Data into Hyperspectral Data
4.3. Uncertanties in Validation of Landsat 8 with Respect to Arable Mark 2 Sensor
5. Results and Discussion
5.1. Arable Mark 2 Radiometric Calibration with ASD FieldSpec
5.2. Deriving Multispectral Arable Data into Hyperspectral Data and SBAF Correction
5.3. Surface Reflectance Validation of Landsat 8 with Respect to Arable Mark 2 Sensor
5.4. Uncertanties in Arable Radiometric Calibration and Landsat Surface Reflectance Validation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ. 2012, 122, 30–40. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Teixeira Pinto, C.; Jing, X.; Leigh, L. Evaluation analysis of Landsat level-1 and level-2 data products using in situ measurements. Remote Sens. 2020, 12, 2597. [Google Scholar] [CrossRef]
- Arable Mark 2 Core Measurements. Available online: https://www.arable.com/wp-content/uploads/2021/10/Arable-Mark-2-Core-Measurements-Accuracy-Whitepaper-21_01.pdf (accessed on 14 March 2023).
- Decision Agriculture. Available online: https://www.arable.com/ (accessed on 14 March 2023).
- Arable. Available online: https://www.arable.com/company/ (accessed on 15 March 2023).
- Pinto, C.T. Uncertainty Evaluation for in-Flight Radiometric Calibration of Earth Observation Sensors. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais, San Jose dos Campos, Brazil, 2016. [Google Scholar]
- ARABLE MARK 2 MEASUREMENTS. Available online: https://www.arable.com/wp-content/uploads/2021/10/Arable-Mark-2-Measurements-21_05.pdf (accessed on 30 March 2023).
- Arable Developer. Available online: https://developer.arable.com/guide/data.html (accessed on 15 March 2023).
- Arable Mark Agricultural Sensor. Available online: https://byronclee.com/arable-mark (accessed on 30 March 2023).
- Arable Mark Installation Guide. Available online: https://assets.ctfassets.net/uzs63p7awoht/q7nR9cf80Seea2wm8uwq6/6de68cb66a8f529a757b70f36186a906/Arable_Mark_Installation_Guide.pdf (accessed on 15 March 2023).
- Arable Mark 2 Product Specifications. Available online: https://www.arable.com/wp-content/uploads/2021/10/Arable-Mark-2-w_-Solar-Product-Specifications-20_10.pdf (accessed on 15 March 2023).
- Pinto, C.; Ponzoni, F.; Castro, R.; Leigh, L.; Mishra, N.; Aaron, D.; Helder, D. First in-flight radiometric calibration of MUX and WFI on-board CBERS-4. Remote Sens. 2016, 8, 405. [Google Scholar] [CrossRef]
- Anderson, N.; Biggar, S.F.; Burkhart, C.J.; Thome, K.J.; Mavko, M. Bidirectional calibration results for the cleaning of Spectralon reference panels. In Proceedings of the Earth Observing Systems VII; Society of Photo Optical: Bellingham, WA, USA, 2002; pp. 201–210. [Google Scholar]
- Helder, D.; Thome, K.; Aaron, D.; Leigh, L.; Czapla-Myers, J.; Leisso, N.; Biggar, S.; Anderson, N. Recent surface reflectance measurement campaigns with emphasis on best practices, SI traceability and uncertainty estimation. Metrologia 2012, 49, S21. [Google Scholar] [CrossRef]
- Jackson, R.D.; Moran, M.S.; Slater, P.N.; Biggar, S.F. Field calibration of reference reflectance panels. Remote Sens. Environ. 1987, 22, 145–158. [Google Scholar] [CrossRef]
- Biggar, S.F.; Thome, K.J.; Wisniewski, W. Vicarious radiometric calibration of EO-1 sensors by reference to high-reflectance ground targets. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1174–1179. [Google Scholar] [CrossRef]
- Thome, K. Absolute radiometric calibration of Landsat 7 ETM+ using the reflectance-based method. Remote Sens. Environ. 2001, 78, 27–38. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Landsat 8. Available online: https://www.usgs.gov/landsat-missions/landsat-8 (accessed on 15 March 2023).
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990–2000. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Masek, J.; Vermote, E.; Saleous, N.; Wolfe, R.; Hall, F.; Huemmrich, K.; Gao, F.; Kutler, J.; Lim, T. LEDAPS Landsat Calibration, Reflectance, Atmospheric Correction Preprocessing Code; ORNL DAAC: Oak Ridge, TN, USA, 2012. [Google Scholar]
- Vermote, E.; Roger, J.-C.; Franch, B.; Skakun, S. LaSRC (Land Surface Reflectance Code): Overview, application and validation using MODIS, VIIRS, LANDSAT and Sentinel 2 data’s. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8173–8176. [Google Scholar]
- U.S. Geological Survey. March 6, 2017—Landsat 8 Collection 1 Data Available. Available online: https://www.usgs.gov/landsat-missions/march-6-2017-landsat-8-collection-1-data-available (accessed on 15 March 2023).
- U.S. Geological Survey. Landsat Collection 2 Level-2 Science Products. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-collection-2-level-2-science-products (accessed on 15 March 2023).
- Landsat Collection 1 vs. Collection 2 Summary. Available online: https://d9-wret.s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/files/Landsat-C1vsC2-2021-0430-LMWS.pdf (accessed on 15 March 2023).
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.B.; Angal, A.; Choi, T.; Xiong, X.; Doelling, D.R. Applications of spectral band adjustment factors (SBAF) for cross-calibration. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1267–1281. [Google Scholar] [CrossRef]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.; Choi, T.; Angal, A.; Xiong, X. Use of EO-1 Hyperion data to calculate spectral band adjustment factors (SBAF) between the L7 ETM+ and Terra MODIS sensors. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 1667–1670. [Google Scholar]
- Gorroño, J.; Banks, A.C.; Fox, N.P.; Underwood, C. Radiometric inter-sensor cross-calibration uncertainty using a traceable high accuracy reference hyperspectral imager. ISPRS J. Photogramm. Remote Sens. 2017, 130, 393–417. [Google Scholar] [CrossRef]
- Habte, A.M.; Andreas, A.M.; Sengupta, M.; Narasappa, R.; Hoke, A.F.; Gotseff, P.; Thiagarajan, R.; Wolf, A.; Carranza, L.; Watts, D. Low-Cost Multiparameter Device for Solar Resource Applications; National Renewable Energy Lab. (NREL): Golden, CO, USA, 2019. [Google Scholar]
- Reda, I.; Andreas, A. Solar position algorithm for solar radiation applications. Sol. Energy 2004, 76, 577–589. [Google Scholar] [CrossRef]
- Osterwald, C.; Emery, K. Spectroradiometric sun photometry. J. Atmos. Ocean. Technol. 2000, 17, 1171–1188. [Google Scholar] [CrossRef]
- Aerosol Robotic Network (AERONET). Available online: https://aeronet.gsfc.nasa.gov/ (accessed on 15 March 2023).
- Berk, A.; Anderson, G.P.; Acharya, P.K.; Shettle, E.P. MODTRAN® 5.2.1 User’s Manual. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.1743&rep=rep1&type=pdf (accessed on 15 March 2023).
- Hanslmeier, A. The Sun and Space Weather; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Landsat, U. Landsat 8–9 Calibration and Validation (Cal/Val) Algorithm Description Document (ADD); United States Geological Society: Sioux Falls, SD, USA, 2021. [Google Scholar]
- USGS. Landsat 8–9 Operational Land Imager (OLI)-Thermal Infrared Sensor (TIRS) Collection 2 Level 2 (L2) Data Format Control Book (DFCB); U.S. Geological Survey: Reston, VA, USA, 2020. [Google Scholar]
- Teixeira Pinto, C. Vicarious Calibration Reflectance-Based Approach Cross-Calibration Method Evaluation of Uncertainties. Ph.D. Thesis, Utah Sate University, Logan, UT, USA, 2018. [Google Scholar]
- Helder, D.; Doelling, D.; Bhatt, R.; Choi, T.; Barsi, J. Calibrating geosynchronous and polar orbiting satellites: Sharing best practices. Remote Sens. 2020, 12, 2786. [Google Scholar] [CrossRef]
Site | Lat/Long | Land Cover | Overpass Date | Number of Cases P029R029 | Number of Cases P030R029 | ROI Size (m) |
---|---|---|---|---|---|---|
Arlington Site | ||||||
Grass Field | 38°29′49.20″N 115°41′24.00″W | Grass | 2020–2022 | 25 cases | 16 cases | 90 × 30 |
Corn/Soybeans Field | 44°24′38.5″N 97°07′36.1″W | Corn/Soybeans | 2020–2022 | 25 cases | 16 cases | 60 × 60 |
North Airport Site | 44°19′28.6″N 96°49′26.0″W | Grass | 2020–2022 | 25 cases | - | 120 × 90 |
Research Park Site | 44°19′18.4″N 96°45′32.2″W | Alfalfa | 2020–2022 | 25 cases | - | 60 × 90 |
Arable Mark 2 Bands | Average SR Difference | |
---|---|---|
Before Calibration | After Calibration | |
Blue | 0.0002 | 0.0003 |
Green | 0.0056 | 0.0004 |
Yellow | 0.0068 | 0.0002 |
Red | 0.0121 | 0.0005 |
Red-Edge | 0.0161 | −0.0014 |
NIR-1 | −0.0081 | −0.0023 |
NIR-2 | 0.0746 | −0.0006 |
L8 OLI Bands | Average SR Difference | |
---|---|---|
Mean | ||
Coastal Aerosol | −0.0054 | 0.0150 |
Blue | −0.0042 | 0.0143 |
Green | −0.0049 | 0.0146 |
Red | −0.0061 | 0.0180 |
NIR | −0.0176 | 0.0301 |
SWIR-1 | −0.0502 | 0.0599 |
SWIR-2 | −0.0279 | 0.0547 |
Arable Mark 2 Bands | Calibrated Arable SR | ||
---|---|---|---|
Average Uncertainty (%) | Minimum Uncertainty (%) | Maximum Uncertainty (%) | |
Blue | 1.36 | 1.15 | 1.98 |
Green | 1.07 | 0.87 | 1.64 |
Yellow | 1.06 | 0.89 | 1.69 |
Red | 1.08 | 0.83 | 1.83 |
Red-Edge | 1.20 | 0.98 | 1.70 |
NIR-1 | 1.65 | 1.18 | 2.20 |
NIR-2 | 1.33 | 1.16 | 1.67 |
Arable Mark 2 Bands | Calibrated Arable SR Uncertainty (%) | Automated Hyperspectral Uncertainty (%) | Total Uncertainty (%) |
---|---|---|---|
Blue | 1.36 | 4.95 | 5.13 |
Green | 1.07 | 4.35 | 4.48 |
Yellow | 1.06 | 4.17 | 4.30 |
Red | 1.08 | 4.76 | 4.88 |
Red-Edge | 1.20 | 3.65 | 3.84 |
NIR-1 | 1.65 | 3.55 | 3.92 |
NIR-2 | 1.33 | 3.67 | 3.91 |
L8 OLI Bands | L8 OLI Temporal Uncertainty (%) | Calibrated Arable SR Uncertainty (%) | SBAF Uncertainty (%) | Total Uncertainty (%) |
---|---|---|---|---|
Coastal Aerosol | 1 | 1.36 | 7.01 | 7.21 |
Blue | 1 | 1.36 | 7.05 | 7.20 |
Green | 1 | 1.07 | 5.95 | 6.13 |
Red | 1 | 1.08 | 7.25 | 7.40 |
NIR | 1 | 1.33 | 5.04 | 5.27 |
SWIR-1 | 1 | 1.33 | 5.02 | 5.38 |
SWIR-2 | 1.8 | 1.08 | 6.42 | 6.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pathiranage, D.S.; Leigh, L.; Pinto, C.T. Evaluation of Low-Cost Radiometer for Surface Reflectance Retrieval and Orbital Sensor’s Validation. Remote Sens. 2023, 15, 2444. https://doi.org/10.3390/rs15092444
Pathiranage DS, Leigh L, Pinto CT. Evaluation of Low-Cost Radiometer for Surface Reflectance Retrieval and Orbital Sensor’s Validation. Remote Sensing. 2023; 15(9):2444. https://doi.org/10.3390/rs15092444
Chicago/Turabian StylePathiranage, Dinithi Siriwardana, Larry Leigh, and Cibele Teixeira Pinto. 2023. "Evaluation of Low-Cost Radiometer for Surface Reflectance Retrieval and Orbital Sensor’s Validation" Remote Sensing 15, no. 9: 2444. https://doi.org/10.3390/rs15092444
APA StylePathiranage, D. S., Leigh, L., & Pinto, C. T. (2023). Evaluation of Low-Cost Radiometer for Surface Reflectance Retrieval and Orbital Sensor’s Validation. Remote Sensing, 15(9), 2444. https://doi.org/10.3390/rs15092444