Evaluating Atmospheric Correction Methods for Sentinel−2 in Low−to−High−Turbidity Chinese Coastal Waters
Abstract
:1. Introduction
2. Data and Method
2.1. Study Sites
2.2. In Situ Data
2.2.1. In Situ Rrs Data from Sites
2.2.2. Evaluating In Situ Spectral Data by Quality Assurance System (QAS)
2.3. Satellite Data
2.4. Atmospheric Correction Processors
2.5. Data Filtering and Matching Methods
2.5.1. In Situ Data Processing
2.5.2. Processing Satellite Data
- (a)
- (b)
- 95th
- (c)
- (d)
2.6. Metrics to Assess Precision
3. Results and Discussion
3.1. Comparison of Results of Atmospheric Correction of Data on Waters with Varying Turbidity
3.2. Evaluation of Results of ACOLITE−EXP for Highly Turbid Waters
4. Conclusions
- (i)
- The performance of the AC processors was limited in highly turbid water, with correlation coefficients lower than 0.46 and negative values observed in the 443 nm band. Among the four processors evaluated, SeaDAS−MUMM demonstrated the best performance, with an average of 0.0146 and an average of 29.80%. The performance of ACOLITE−DSF was relatively better than that of the other processors, with an average of 0.0213 and an average of 43.43%.
- (ii)
- The performance of the AC processors improved significantly in water with medium turbidity (DONG’OU), with C2RCC−c2rcc yielding the best results. The correlation coefficients of 443, 490, 560, and 665 nm were 0.88, 0.92, 0.93, and 0.97, respectively, with an average of 0.0024, and their s were 17.29%, 18.56%, 12.51%, and 25.96%, respectively. These results met the accuracy requirement of 30% prescribed by the Global Climate Observing System. The performance of POLYMER was relatively good, with correlation coefficients of0.55, 0.69, 0.80, 0.95, and an average of 0.0037. The s for the four bands were 29.74%, 26.64%, 23.57%, and 60.33%, and all bands except for the red band had a smaller than 30%.
- (iii)
- The performances of the four AC processors were comparable in water with low turbidity (MUPING), with the average correlation coefficients of all exceeding 0.7. The average s of the ACOLITE−DSF, SeaDAS−NIR, POLYMER, and C2RCC−c2rcc were 0.0054, 0.0044, 0.0034, and 0.0032, respectively, and their average s were 92.64%, 38.26%, 45.62%, and 28.41%, respectively. C2RCC−c2rcc delivered the best performance. However, the performance of the ACOLITE−EXP processor in waters with low turbidity (MUPING) was notably inferior to its performance in waters with moderate turbidity (DONG’OU). Notably, the s of ACOLITE−DSF at 443 nm and 665 nm were alarmingly high, with readings of 113.78% and 163.78%, respectively.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gordon, H.R.; Wang, M. Retrieval of Water-Leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: A Preliminary Algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef]
- Wang, M.; IOCCG. Atmospheric Correction for Remotely-Sensed Ocean-Colour; International Ocean Colour Coordinating Group (IOCCG): Dartmouth, NS, Canada, 2010. [Google Scholar]
- Mobley, C.D.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry; NASA: Washington, DC, USA, 2016. [Google Scholar]
- Pahlevan, N.; Mangin, A.; Balasubramanian, S.V.; Smith, B.; Alikas, K.; Arai, K.; Barbosa, C.; Bélanger, S.; Binding, C.; Bresciani, M.; et al. ACIX-Aqua: A Global Assessment of Atmospheric Correction Methods for Landsat-8 and Sentinel-2 over Lakes, Rivers, and Coastal Waters. Remote Sens. Environ. 2021, 258, 112366. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Surface-Roughness Considerations for Atmospheric Correction of Ocean Color Sensors 1: The Rayleigh-Scattering Component. Appl. Opt. 1992, 31, 4247–4260. [Google Scholar] [CrossRef] [PubMed]
- Wang, M. The Rayleigh Lookup Tables for the SeaWiFS Data Processing: Accounting for the Effects of Ocean Surface Roughness. Int. J. Remote Sens. 2002, 23, 2693–2702. [Google Scholar] [CrossRef]
- Gordon, H.R. Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era. J. Geophys. Res. Atmos. 1997, 102, 17081–17106. [Google Scholar] [CrossRef]
- Hu, C.; Carder, K.L.; Muller-Karger, F.E. Atmospheric Correction of SeaWiFS Imagery over Turbid Coastal Waters: A Practical Method. Remote Sens. Environ. 2000, 74, 195–206. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Detection of Turbid Waters and Absorbing Aerosols for the MODIS Ocean Color Data Processing. Remote Sens. Environ. 2007, 110, 149–161. [Google Scholar] [CrossRef]
- Moore, G.F.; Aiken, J.; Lavender, S.J. The Atmospheric Correction of Water Colour and the Quantitative Retrieval of Suspended Particulate Matter in Case II Waters: Application to MERIS. Int. J. Remote Sens. 1999, 20, 1713–1733. [Google Scholar] [CrossRef]
- Wang, M.; Shi, W. Estimation of Ocean Contribution at the MODIS Near-Infrared Wavelengths along the East Coast of the U.S.: Two Case Studies. Geophys. Res. Lett. 2005, 32, L13606. [Google Scholar] [CrossRef]
- Wang, M. Remote Sensing of the Ocean Contributions from Ultraviolet to Near-Infrared Using the Shortwave Infrared Bands: Simulations. Appl. Opt. 2007, 46, 1535–1547. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. An Assessment of the Black Ocean Pixel Assumption for MODIS SWIR Bands. Remote Sens. Environ. 2009, 113, 1587–1597. [Google Scholar] [CrossRef]
- Wang, M.; Son, S.; Shi, W. Evaluation of MODIS SWIR and NIR-SWIR Atmospheric Correction Algorithms Using SeaBASS Data. Remote Sens. Environ. 2009, 113, 635–644. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Advantages of High Quality SWIR Bands for Ocean Colour Processing: Examples from Landsat-8. Remote Sens. Environ. 2015, 161, 89–106. [Google Scholar] [CrossRef]
- Ibrahim, A.; Franz, B.A.; Ahmad, Z.; Bailey, S.W. Multiband Atmospheric Correction Algorithm for Ocean Color Retrievals. Front. Earth Sci. 2019, 7, 116. [Google Scholar] [CrossRef]
- Wang, D.; Ronghua, M.; Xue, K.; Li, J. Improved Atmospheric Correction Algorithm for Landsat 8–OLI Data in Turbid Waters: A Case Study for the Lake Taihu, China. Opt. Express 2019, 27, A1400–A1418. [Google Scholar] [CrossRef]
- Wang, D.; Ma, R.; Xue, K.; Loiselle, S.A. The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sens. 2019, 11, 169. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Tang, J.; Wang, D. Atmospheric Correction of Satellite Ocean Color Imagery Using the Ultraviolet Wavelength for Highly Turbid Waters. Opt. Express 2012, 20, 20754–20770. [Google Scholar] [CrossRef]
- Singh, R.K.; Shanmugam, P.; He, X.; Schroeder, T. UV-NIR Approach with Non-Zero Water-Leaving Radiance Approximation for Atmospheric Correction of Satellite Imagery in Inland and Coastal Zones. Opt. Express 2019, 27, A1118–A1145. [Google Scholar] [CrossRef]
- Gossn, J.I.; Ruddick, K.G.; Dogliotti, A.I. Atmospheric Correction of OLCI Imagery over Extremely Turbid Waters Based on the Red, NIR and 1016 Nm Bands and a New Baseline Residual Technique. Remote Sens. 2019, 11, 220. [Google Scholar] [CrossRef]
- Pahlevan, N.; Schott, J.R.; Franz, B.A.; Zibordi, G.; Markham, B.; Bailey, S.; Schaaf, C.B.; Ondrusek, M.; Greb, S.; Strait, C.M. Landsat 8 Remote Sensing Reflectance (Rrs) Products: Evaluations, Intercomparisons, and Enhancements. Remote Sens. Environ. 2017, 190, 289–301. [Google Scholar] [CrossRef]
- Sterckx, S.; Knaeps, S.; Kratzer, S.; Ruddick, K. SIMilarity Environment Correction (SIMEC) Applied to MERIS Data over Inland and Coastal Waters. Remote Sens. Environ. 2015, 157, 96–110. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Atmospheric Correction of Metre-Scale Optical Satellite Data for Inland and Coastal Water Applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Ruddick, K.G.; Ovidio, F.; Rijkeboer, M. Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters. Appl. Opt. 2000, 39, 897–912. [Google Scholar] [CrossRef] [PubMed]
- Keukelaere, L.D.; Sterckx, S.; Adriaensen, S.; Knaeps, E.; Reusen, I.; Giardino, C.; Bresciani, M.; Hunter, P.; Neil, C.; Van der Zande, D. Atmospheric Correction of Landsat-8/OLI and Sentinel-2/MSI Data Using ICOR Algorithm: Validation for Coastal and Inland Waters. Eur. J. Remote Sens. 2018, 51, 525–542. [Google Scholar] [CrossRef]
- Steinmetz, F.; Deschamps, P.-Y.; Ramon, D. Atmospheric Correction in Presence of Sun Glint: Application to MERIS. Opt. Express 2011, 19, 9783–9800. [Google Scholar] [CrossRef]
- Steinmetz, F.; Ramon, D. Sentinel-2 MSI and Sentinel-3 OLCI Consistent Ocean Colour Products Using POLYMER. In Proceedings of the Remote Sensing of the Open and Coastal Ocean and Inland Waters, Honolulu, HI, USA, 24–25 September 2018; Volume 10778, pp. 46–55. [Google Scholar]
- Wang, J.; Lee, Z.; Wang, D.; Shang, S.; Wei, J.; Gilerson, A. Atmospheric Correction over Coastal Waters with Aerosol Properties Constrained by Multi-Pixel Observations. Remote Sens. Environ. 2021, 265, 112633. [Google Scholar] [CrossRef]
- Brockmann, C.; Doerffer, R.; Peters, M.; Kerstin, S.; Embacher, S.; Ruescas, A. Evolution of the C2RCC Neural Network for Sentinel 2 and 3 for the Retrieval of Ocean Colour Products in Normal and Extreme Optically Complex Waters. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; Volume 740, p. 54. [Google Scholar]
- Fan, Y.; Li, W.; Gatebe, C.K.; Jamet, C.; Zibordi, G.; Schroeder, T.; Stamnes, K. Atmospheric Correction over Coastal Waters Using Multilayer Neural Networks. Remote Sens. Environ. 2017, 199, 218–240. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Chen, N.; Ahn, J.-H.; Park, Y.-J.; Kratzer, S.; Schroeder, T.; Ishizaka, J.; Chang, R.; Stamnes, K. OC-SMART: A Machine Learning Based Data Analysis Platform for Satellite Ocean Color Sensors. Remote Sens. Environ. 2021, 253, 112236. [Google Scholar] [CrossRef]
- Novoa, S.; Doxaran, D.; Ody, A.; Vanhellemont, Q.; Lafon, V.; Lubac, B.; Gernez, P. Atmospheric Corrections and Multi-Conditional Algorithm for Multi-Sensor Remote Sensing of Suspended Particulate Matter in Low-to-High Turbidity Levels Coastal Waters. Remote Sens. 2017, 9, 61. [Google Scholar] [CrossRef]
- Martins, V.S.; Barbosa, C.C.F.; De Carvalho, L.A.S.; Jorge, D.S.F.; Lobo, F.D.L.; Novo, E.M.L.d.M. Assessment of Atmospheric Correction Methods for Sentinel-2 MSI Images Applied to Amazon Floodplain Lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef]
- Warren, M.A.; Simis, S.G.H.; Martinez-Vicente, V.; Poser, K.; Bresciani, M.; Alikas, K.; Spyrakos, E.; Giardino, C.; Ansper, A. Assessment of Atmospheric Correction Algorithms for the Sentinel-2A MultiSpectral Imager over Coastal and Inland Waters. Remote Sens. Environ. 2019, 225, 267–289. [Google Scholar] [CrossRef]
- Renosh, P.R.; Doxaran, D.; Keukelaere, L.D.; Gossn, J.I. Evaluation of Atmospheric Correction Algorithms for Sentinel-2-MSI and Sentinel-3-OLCI in Highly Turbid Estuarine Waters. Remote Sens. 2020, 12, 1285. [Google Scholar] [CrossRef]
- Bui, Q.-T.; Jamet, C.; Vantrepotte, V.; Mériaux, X.; Cauvin, A.; Mograne, M.A. Evaluation of Sentinel-2/MSI Atmospheric Correction Algorithms over Two Contrasted French Coastal Waters. Remote Sens. 2022, 14, 1099. [Google Scholar] [CrossRef]
- Song, Q.; Chen, S.; Hu, L.; Wang, X.; Shi, X.; Li, X.; Deng, L.; Ma, C. Introducing Two Fixed Platforms in the Yellow Sea and East China Sea Supporting Long-Term Satellite Ocean Color Validation: Preliminary Data and Results. Remote Sens. 2022, 14, 2894. [Google Scholar] [CrossRef]
- Jilan, S.; Kangshan, W. Changjiang River Plume and Suspended Sediment Transport in Hangzhou Bay. Cont. Shelf Res. 1989, 9, 93–111. [Google Scholar] [CrossRef]
- Jiyu, C.; Cangzi, L.; Chongle, Z.; Walker, H.J. Geomorphological Development and Sedimentation in Qiantang Estuary and Hangzhou Bay. J. Appl. Remote Sens. 1990, 6, 559–572. [Google Scholar]
- Lin, C.-M.; Zhuo, H.-C.; Gao, S. Sedimentary Facies and Evolution in the Qiantang River Incised Valley, Eastern China. Mar. Geol. 2005, 219, 235–259. [Google Scholar] [CrossRef]
- Xie, D.; Wang, Z.; Gao, S.; De Vriend, H.J. Modeling the Tidal Channel Morphodynamics in a Macro-Tidal Embayment, Hangzhou Bay, China. Cont. Shelf Res. 2009, 29, 1757–1767. [Google Scholar] [CrossRef]
- He, X.; Bai, Y.; Pan, D.; Huang, N.; Dong, X.; Chen, J.; Chen, C.-T.A.; Cui, Q. Using Geostationary Satellite Ocean Color Data to Map the Diurnal Dynamics of Suspended Particulate Matter in Coastal Waters. Remote Sens. Environ. 2013, 133, 225–239. [Google Scholar] [CrossRef]
- Shen, F.; Zhou, Y.; Li, J.; He, Q.; Verhoef, W. Remotely Sensed Variability of the Suspended Sediment Concentration and Its Response to Decreased River Discharge in the Yangtze Estuary and Adjacent Coast. Cont. Shelf Res. 2013, 69, 52–61. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, J.; Dong, Q.; Song, Q.; Ding, J. Retrieval of Total Suspended Matter Concentration in the Yellow and East China Seas from MODIS Imagery. Remote Sens. Environ. 2010, 114, 392–403. [Google Scholar] [CrossRef]
- Xu, Y.; He, X.; Bai, Y.; Wang, D.; Zhu, Q.; Ding, X. Evaluation of Remote-Sensing Reflectance Products from Multiple Ocean Color Missions in Highly Turbid Water (Hangzhou Bay). Remote Sens. 2021, 13, 4267. [Google Scholar] [CrossRef]
- Dai, Q.; Pan, D.; He, X.; Zhu, Q.; Gong, F.; Huang, H. High-Frequency Observation of Water Spectrum and Its Application in Monitoring of Dynamic Variation of Suspended Materials in the Hangzhou Bay. Guang Pu 2015, 35, 3247–3254. [Google Scholar] [PubMed]
- Zibordi, G.; Mélin, F.; Berthon, J.-F.; Holben, B.; Slutsker, I.; Giles, D.; D’Alimonte, D.; Vandemark, D.; Feng, H.; Schuster, G.; et al. AERONET-OC: A Network for the Validation of Ocean Color Primary Products. J. Atmos. Oceanic Technol. 2009, 26, 1634–1651. [Google Scholar] [CrossRef]
- Wang, M.; Bailey, S.W. Correction of Sun Glint Contamination on the SeaWiFS Ocean and Atmosphere Products. Appl. Opt. 2001, 40, 4790–4798. [Google Scholar] [CrossRef]
- Mobley, C.D. Estimation of the Remote-Sensing Reflectance from above-Surface Measurements. Appl. Opt. 1999, 38, 7442–7455. [Google Scholar] [CrossRef]
- Wei, J.; Lee, Z.; Shang, S. A System to Measure the Data Quality of Spectral Remote-Sensing Reflectance of Aquatic Environments. J. Geophys. Res. Oceans 2016, 121, 8189–8207. [Google Scholar] [CrossRef]
- Vermote, E.F.; El Saleous, N.; Justice, C.O.; Kaufman, Y.J.; Privette, J.L.; Remer, L.; Roger, J.C.; Tanré, D. Atmospheric Correction of Visible to Middle-Infrared EOS-MODIS Data over Land Surfaces: Background, Operational Algorithm and Validation. J. Geophys. Res. Atmos. 1997, 102, 17131–17141. [Google Scholar] [CrossRef]
- Ibrahim, A.; Franz, B.A.; Ahmad, Z.; Healy, R.J.; Gao, B.C. Hyperspectral Atmospheric Correction Using L2gen; American Geophysical Union: Washington, DC, USA, 2016; Volume 2016, p. EC34D-1208. [Google Scholar]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of Near-Infrared Water-Leaving Reflectance for Satellite Ocean Color Data Processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef]
- Ahmad, Z.; Fraser, R.S. An Iterative Radiative Transfer Code For Ocean-Atmosphere Systems. J. Atmos. Sci. 1982, 39, 656–665. [Google Scholar] [CrossRef]
- Lenoble, J.; Herman, M.; Deuzé, J.L.; Lafrance, B.; Santer, R.; Tanré, D. A Successive Order of Scattering Code for Solving the Vector Equation of Transfer in the Earth’s Atmosphere with Aerosols. J. Quant. Spectrosc. Radiat. Transf. 2007, 107, 479–507. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Sensitivity Analysis of the Dark Spectrum Fitting Atmospheric Correction for Metre- and Decametre-Scale Satellite Imagery Using Autonomous Hyperspectral Radiometry. Opt. Express 2020, 28, 29948–29965. [Google Scholar] [CrossRef]
- Franz, B.A.; Bailey, S.W.; Kuring, N.; Werdell, P.J. Ocean Color Measurements with the Operational Land Imager on Landsat-8: Implementation and Evaluation in SeaDAS. J. Appl. Remote Sens. 2015, 9, 096070. [Google Scholar] [CrossRef]
- Vanhellemont, Q.; Ruddick, K. Assessment of Sentinel-3/OLCI Sub-Pixel Variability and Platform Impact Using Landsat-8/OLI. In Proceedings of the Sentinel-3 for Science Workshop, Venice-Lido, Italy, 2–5 June 2015; p. 8. [Google Scholar]
- Pereira-Sandoval, M.; Ruescas, A.; Urrego, P.; Ruiz-Verdu, A.; Delegido, J.; Tenjo, C.; Soria-Perpinya, X.; Vicente, E.; Soria, J.; Moreno, J. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sens. 2019, 11, 1469. [Google Scholar] [CrossRef]
- Maciel, F.P.; Pedocchi, F. Evaluation of ACOLITE Atmospheric Correction Methods for Landsat-8 and Sentinel-2 in the Río de La Plata Turbid Coastal Waters. Int. J. Remote Sens. 2022, 43, 215–240. [Google Scholar] [CrossRef]
Site | Orbit | Tile |
---|---|---|
HTYZ | R089 | T51RUP |
DONG’OU | R089 | T51SUB |
MUPING | R046 | T51RUL |
ACOLITE (DSF\EXP) | SeaDAS (NIR\MUMM) | POLYMER | C2RCC (C2rcc\C2x) | |
---|---|---|---|---|
Categories | Two step | Two step | Two step | Machine learning |
Aerosol algorithm | Dark target approach (tiled) & SWIR extrapolation (per pixel) | NIR-SWIR band ratio (per pixel) | Polynomial fitting (per pixel) | - |
Cloud masking | IdePix | |||
Output grid cell pixel (m) | 10 | 20 | 10/20/60 | 10/20/60 |
Version | 20211124 | 8.2.0 | 4.14 | 1.1 |
Open-source access | Yes | Yes | Yes | Yes |
Site | Total Matchups | Satellite | ACOLITE | SeaDAS | POLYMER | C2RCC |
---|---|---|---|---|---|---|
HTYZ | 20 | Sentinel−2A | 10 | 10 | 10 | 3 |
Sentinel−2B | 10 | 10 | 9 | 4 | ||
DONG’OU | 38 | Sentinel−2A | 22 | 22 | 22 | 22 |
Sentinel−2B | 16 | 16 | 16 | 16 | ||
MUPING | 23 | Sentinel−2A | 12 | 12 | 13 | 13 |
Sentinel−2B | 9 | 7 | 10 | 10 |
HTYZ | DONG’OU | MUPING | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
R | (SR−1) | (%) | R | (SR−1) | (%) | R | (SR−1) | (%) | ||
ACOLITE–DSF (N = 20, 38, 21) | 443 | −0.0021 | 0.0212 | 62.26 | 0.5833 | 0.0054 | 63.73 | 0.5781 | 0.0080 | 113.78 |
490 | 0.1693 | 0.0215 | 48.96 | 0.8019 | 0.0041 | 29.80 | 0.7692 | 0.0059 | 53.49 | |
560 | 0.4079 | 0.0210 | 34.07 | 0.8916 | 0.0041 | 20.45 | 0.8543 | 0.0048 | 39.51 | |
665 | 0.4294 | 0.0216 | 28.44 | 0.9405 | 0.0035 | 84.42 | 0.6823 | 0.0031 | 163.78 | |
SeaDAS (N = 20, 38, 19) | 443 | 0.2104 | 0.0144 | 42.66 | 0.1397 | 0.0101 | 76.80 | 0.4789 | 0.0051 | 41.08 |
490 | 0.2725 | 0.0132 | 31.44 | 0.2799 | 0.0092 | 48.48 | 0.7582 | 0.0051 | 35.38 | |
560 | 0.3720 | 0.0138 | 23.25 | 0.4291 | 0.0096 | 41.46 | 0.8678 | 0.0044 | 24.45 | |
665 | 0.4636 | 0.0169 | 21.86 | 0.6100 | 0.0062 | 86.04 | 0.7543 | 0.0031 | 52.14 | |
POLYMER (N = 19, 38, 23) | 443 | 0.0715 | 0.0232 | 69.64 | 0.5512 | 0.0036 | 29.74 | 0.5765 | 0.0038 | 43.36 |
490 | 0.0936 | 0.0272 | 68.70 | 0.6896 | 0.0041 | 26.64 | 0.8776 | 0.0037 | 30.63 | |
560 | 0.1544 | 0.0243 | 42.46 | 0.8048 | 0.0050 | 23.57 | 0.9402 | 0.0039 | 25.24 | |
665 | 0.1239 | 0.0226 | 30.39 | 0.9534 | 0.0021 | 60.33 | 0.8240 | 0.0021 | 83.25 | |
C2RCC (N = 7, 38, 23) | 443 | −0.0389 | 0.0276 | 78.04 | 0.8840 | 0.0019 | 17.30 | 0.7156 | 0.0036 | 33.44 |
490 | 0.0761 | 0.0291 | 65.67 | 0.9212 | 0.0027 | 18.56 | 0.8014 | 0.0041 | 25.73 | |
560 | 0.2179 | 0.0281 | 46.61 | 0.9349 | 0.0032 | 12.51 | 0.9139 | 0.0030 | 19.03 | |
665 | 0.3565 | 0.0395 | 59.15 | 0.9714 | 0.0016 | 25.96 | 0.8533 | 0.0022 | 35.45 |
Band Combination (nm) | S2A (N1/N2) | S2B (N1/N2) |
---|---|---|
865–1610 | 0/10 | 1/10 |
865–2200 | 0/10 | 2/10 |
1610–2200 | 10/10 | 10/10 |
Band (nm) | R | (%) | ||
---|---|---|---|---|
DSF (N = 20) | 443 | −0.0021 | 0.0212 | 62.26 |
490 | 0.1693 | 0.0215 | 48.96 | |
560 | 0.4079 | 0.0210 | 34.07 | |
665 | 0.4294 | 0.0216 | 28.44 | |
EXP (N = 20) | 443 | 0.1431 | 0.0128 | 31.87 |
490 | 0.2386 | 0.0161 | 29.98 | |
560 | 0.3077 | 0.0224 | 36.57 | |
665 | 0.2277 | 0.0245 | 32.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, D.; Gong, F.; Xu, Y.; He, X.; Zhang, X.; Fu, D. Evaluating Atmospheric Correction Methods for Sentinel−2 in Low−to−High−Turbidity Chinese Coastal Waters. Remote Sens. 2023, 15, 2353. https://doi.org/10.3390/rs15092353
Zhang S, Wang D, Gong F, Xu Y, He X, Zhang X, Fu D. Evaluating Atmospheric Correction Methods for Sentinel−2 in Low−to−High−Turbidity Chinese Coastal Waters. Remote Sensing. 2023; 15(9):2353. https://doi.org/10.3390/rs15092353
Chicago/Turabian StyleZhang, Shuyi, Difeng Wang, Fang Gong, Yuzhuang Xu, Xianqiang He, Xuan Zhang, and Dongyang Fu. 2023. "Evaluating Atmospheric Correction Methods for Sentinel−2 in Low−to−High−Turbidity Chinese Coastal Waters" Remote Sensing 15, no. 9: 2353. https://doi.org/10.3390/rs15092353
APA StyleZhang, S., Wang, D., Gong, F., Xu, Y., He, X., Zhang, X., & Fu, D. (2023). Evaluating Atmospheric Correction Methods for Sentinel−2 in Low−to−High−Turbidity Chinese Coastal Waters. Remote Sensing, 15(9), 2353. https://doi.org/10.3390/rs15092353