Multi-Scale Encoding (MSE) Method with Spectral Shape Information (SSI) for Detecting Marine Oil-Gas Leakages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Marine Oil-Gas Leakages
2.2. MSE Method
2.3. MSE Method with SSI
3. Results
3.1. Oil Spill Detection in Landast 7 Data
3.2. Oil Spill Detection in Landsat 8 Data
3.3. Oil Spill Detection in Sentinel-2 Data
3.4. Oil Spill Detection in MODIS Data
3.5. Oil Spill Detection in Zhuhai-1 Data
3.6. Oil Spill Detection in AVIRIS Data
3.7. Natural Gas Leakage Detection in Sentinel-2 Data
4. Discussion
4.1. Encoding Scales and the Parameters
4.2. The Superiority of the MSE Method with SSI
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alloy, M.; Baxter, D.; Stieglitz, J.; Mager, E.; Hoening, R.; Beenetti, D.; Grosell, M.; Oris, J.; Rogerts, A. Ultraviolet Radiation Enhances the Toxicity of Deepwater Horizon Oil to Mahi-mahi (Coryphaena hippurus) embryo. Environ. Sci. Technol. 2016, 50, 2011–2017. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Liu, Y.; Hu, C.; MacDonald, I.; Lu, Y. Chronic Oiling in Global Oceans. Science 2022, 376, 1300–1304. [Google Scholar] [CrossRef]
- Esbaugh, A.J.; Mager, E.M.; Stieglitz, J.; Hoenig, R.; Brown, T.L.; French, B.; Linbo, T.L.; Lay, C.R.; Forth, H.; Scholz, N.L.; et al. The Effects of Weathering and Chemical Dispersion on Deepwater Horizon Crude Oil Toxicity to Mahi-mahi (Coryphaena hippurus) Early Life Stages. Sci. Total Environ. 2016, 543, 644–651. [Google Scholar] [CrossRef]
- Kokaly, R.; Couvillion, B.; Holloway, J.; Roberts, D.; Ustin, S.; Peterson, S.; Khanna, S.; Piazza, S. Spectroscopic Remote Sensing of the Distribution and Persistence of Oil From the Deepwater Horizon Spill in Barataria Bay Marshes. Remote Sens. Environ. 2013, 129, 210–230. [Google Scholar] [CrossRef]
- Xu, E.G.; Mager, E.M.; Grosell, M.; Christina, P.; Schlenker, L.; Stieglitz, J.; Benetti, D.; Hazard, E.; Courtney, S.M.; Diamante, G.Y.; et al. Time—And Oil-Dependent Transcriptomic and Physiological Responses to Deepwater Horizon Oil in Mahi-Mahi (Coryphaena hippurus) Embryos and Larvae. Environ. Sci. Technol. 2016, 50, 7842–7851. [Google Scholar] [CrossRef]
- Mariano, A.; Kourafalou, V.; Srinivasan, A.; Kang, H.; Halliwell, G.; Ryan, E.; Roffer, M. On The Modeling of The 2010 Gulf of Mexico Oil Spill. Dyn. Atmos. Ocean. 2011, 52, 322–340. [Google Scholar] [CrossRef]
- Rajendran, S.; Vethamony, P.; Saddoni, F.; AI-Saad, H.; AI-Khayat, J.; Seegobin, V.; Govil, H.; Nasir, S. Detection of Wakashio Oil Spill off Mauritius Using Sentinel-1 and 2 Data: Capability of sensors, image transformation methods and mapping. Environ. Pollut. 2021, 274, 116618. [Google Scholar] [CrossRef]
- Vasanasetti, T.; Suneel, V.; Alex, M.J.; Kaliyamoorthi, G.; Thomas, A.P. Assessment of MV Wakashio Oil Spill off Mauritius, Indian Ocean through Satellite Imagery: A case study. J. Earth Syst. Sci. 2022, 131, 21. [Google Scholar] [CrossRef]
- Brekke, C.; Solberg, A.S. Oil Spill Detection by Satellite Remote Sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Jacketti, M.; Beegle-Krause, C.J.; Englehardt, J.D. A Review on the Sinking Mechanisms for Oil and Successful Response Technologies. Mar. Pollut. Bull. 2020, 106, 111626. [Google Scholar] [CrossRef] [PubMed]
- Polychronis, K.; Vassilia, K. Detection of Oil Spills and Underwater Natural Oil Outflow Using Multispectral Satellite Imagery. Int. J. Remote Sens. Appl. 2013, 3, 145–154. [Google Scholar]
- Li, Q.; Han, Y.; Liu, X.; Ansari, U.; Cheng, Y.; Yan, C. Hydrate as a by-product in CO2 leakage during the long-term sub-seabed sequestration and its role in preventing further leakage. Environ. Sci. Pollut. Res. 2022, 29, 77737–77754. [Google Scholar] [CrossRef]
- Li, Q.; Wang, F.; Wang, Y.; Zhou, C.; Chen, J.; Forson, K.; Miao, R.; Su, Y.; Zhag, J. Effect of reservoir characteristics and chemicals on filtration property of water-based drilling fluid in unconventional reservoir and mechanism disclosure. Environ. Sci. Pollut. Res. 2023, 20, 1614–7499. [Google Scholar] [CrossRef]
- Cheliyan, A.S.; Bhattacharyya, S.K. Fuzzy fault tree analysis of oil and gas leakage in subsea production systems. J. Ocean. Eng. Sci. 2018, 3, 38–48. [Google Scholar] [CrossRef]
- Guan, R.; Li, Z.; Li, T.; Li, X.; Yang, J.; Chen, W. Classification of Heterogeneous Mining Areas Based on ResCapsNet and Gaofen-5 Imagery. Remote Sens. 2022, 14, 3216. [Google Scholar] [CrossRef]
- Schneising, O.; Burrows, J.P.; Dickerson, R.R.; Buchwitz, M.; Reuter, M.; Bovensmann, H. Remote Sensing of Fugitive Methane Emissions from Oil and Gas Production in North America Tight Geologic Formations. Earth’s Future 2014, 2, 548–558. [Google Scholar] [CrossRef]
- Dave, S.; Hughes, E.; Gair, S. Monitoring and Quantifying Oil Pollution using Aerial Surveillance Problems and Solutions. In Proceedings of the International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Perth, Australia, 11–13 September 2012. [Google Scholar] [CrossRef]
- Otremba, Z. The Impact on The Reflectance in VIS of A Type of Crude Oil Film Floating on The Water Surface. Opt. Express 2014, 7, 129–134. [Google Scholar] [CrossRef]
- Zhao, D.; Cheng, X.; Zhang, H.; Zhang, H. An Oil Slick Detection Index Based on Landsat 8 Remote Sensing Images. In Proceedings of the 2018 International Workshop on Big Geospatial Data and Data Science (BGDDS), Wuhan, China, 22–23 September 2018. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of Oil Spill Remote Sensing. Mar. Pollut. Bull. 2014, 83, 9–23. [Google Scholar] [CrossRef]
- Loos, E.; Brown, L.; Borstad, G.; Mudge, T.; Alvarez, M. Characterization of Oil Slicks at Sea Using Remote Sensing Techniques. In Proceedings of the OCEANS, New York, NY, USA, 14–19 October 2012. [Google Scholar] [CrossRef]
- Zhao, D.; He, H. Detecting Oil Slicks Under the Heterogeneous Marine Environment Utilizing Multispectral Images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 761–765. [Google Scholar] [CrossRef]
- Zhao, J.; Temimi, M.; Ghedira, H.; Hu, C. Exploring the potential of optical remote sensing for oil spill detection in shallow coastal waters-a case study in the Arabian Gulf. Opt. Express 2014, 22, 13755–13772. [Google Scholar] [CrossRef]
- Chen, W.; Zhou, G.; Liu, Z.; Li, X.; Zheng, X.; Wang, L. NIGAN A Framework for Mountain Road Extraction Integrating Remote Sensing Road-Scene Neighborhood Probability Enhancements and Improved Conditional Generative Adversarial Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Fang, Z. Multiple kernel-based SVM classification of hyperspectral images by combining spectral, spatial, and semantic information. Remote Sens. 2017, 12, 120. [Google Scholar] [CrossRef]
- Zhou, G.; Chen, W.; Li, X.; Wang, L. Split Depth-Wise Separable Graph-Convolution Network for Road Extraction in Complex Environments from High-Resolution Remote-Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Al-Quzouq, R.; Gibril, M.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M. Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.; Matheson, S.; Jones, C.; Holt, B.; et al. State of the Art Satellite and Airborne Marine Oil Spill Remote Sensing: Application to The BP Deepwater Horizon Oil Spill. Remote Sens. Environ. 2012, 124, 185–209. [Google Scholar] [CrossRef]
- Jiao, H.; Zhong, Y.; Zhang, L. An Unsupervised Spectral Matching Classifier Based on Artificial DNA Computing for Hyperspectral Remote Sensing Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4524–4538. [Google Scholar] [CrossRef]
- Jia, X.; Richard, J.A. Binary coding of imaging spectrometer data for fast spectral matching and classification. Remote Sens. Environ. 1993, 43, 47–53. [Google Scholar] [CrossRef]
- Chang, C.; Chakravarty, S.; Chen, H.; Ouyang, Y. Spectral Derivative Feature Coding for Hyperspectral Signature Analysis. Pattern Recognit. 2009, 42, 395–408. [Google Scholar] [CrossRef]
- Jiao, H.; Zhong, Y.; Zhang, L. Artificial DNA Computing-Based Spectral Encoding and Matching Algorithm for Hyperspectral Remote Sensing Data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 4085–4104. [Google Scholar] [CrossRef]
- Brenner, S. Oil Spill Modeling in the Southeastern Mediterranean Sea in Support of Accelerated Offshore Oil and Gass Exploration. Ocean. Dyn. 2015, 65, 1685–1697. [Google Scholar] [CrossRef]
- Körber, J.H.; Sahling, H.; Pape, T.; Ferreira, C.; MacDonald, I.; Bohrmann, G. Natural Oil Seepage at Kobuleti Ridge, Eastern Black Sea. Mar. Pet. Geol. 2014, 50, 68–82. [Google Scholar] [CrossRef]
- Rajnauth, J.J.; Ayeni, K.B.; Barrufet, M.A. Gas Transportation: Present and Future. In Proceedings of the CIPC/SPE Gas Technology Symposium 2008 Joint Conference, Calgary, AB, Canada, 16–19 June 2008. [Google Scholar] [CrossRef]
- Deng, Z.; Yu, T.; Jiang, X.; Shi, S.; Jin, J.; Kang, L.; Zhang, F. Bohai Sea Oil Spill Model: A Numerical Case Study. Mar. Geophys. Res. 2013, 34, 115–125. [Google Scholar] [CrossRef]
- Nadimi, N.; Javidan, R.; Layeghi, K. Efficient Detection of Underwater Natural Gas Pipeline Leak Based on Synthetic Aperture Sonar (SAS) Systems. J. Mar. Sci. Eng. 2021, 9, 1273. [Google Scholar] [CrossRef]
- Korlapati, N.V.S.; Khan, F.; Noor, Q.; Mirza, S.; Vaddiraju, S. Review and analysis of pipeline leak detection methods. J. Pipeline Sci. Eng. 2022, 2, 100074. [Google Scholar] [CrossRef]
- Carpenter, A. The BONN Agreement Aerial Surveillance Programme: Trends in North Sea Oil Pollution 1986–2004. Mar. Pollut. Bull. 2007, 54, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Guo, J.; Guo, M.; Hu, X.; Tang, C.; Wang, C.; Xing, Q. Modeling of Oil Spill Trajectory for 2011 Penglai 19–3 Coastal Drilling Field, China. Appl. Math. Model. 2015, 39, 5331–5340. [Google Scholar] [CrossRef]
- Chen, J.; Di, Z.; Shi, J.; Shu, Y.; Wan, Z.; Song, L.; Zhang, W. Marine oil spill pollution causes and governance: A case study of Sanchi tanker collision and explosion. J. Clean. Prod. 2020, 273, 122978. [Google Scholar] [CrossRef]
- Ziervogel, K.; D’souza, N.; Sweet, J.; Yan, B.; Passow, U. Natural oil slicks fuel surface water microbial activities in the northern Gulf of Mexico. Front. Microbiol. 2014, 5, 188. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C. In Search of Oil Seeps in the Cariaco Basin Using MODIS and MERIS Medium-resolution Data. Remote Sens. Lett. 2014, 5, 442–450. [Google Scholar] [CrossRef]
- Genovez, P.; Freitas, C.; Sant’Anna, S.; Bentz, C.; Lorenzzetti, J. Oil Slicks Detection Using a Polarimetric Region Classifier. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015. [Google Scholar] [CrossRef]
- Mishra, A.K.; Kumar, G.S. Weathering of Oil Spill: Modeling and Analysis. Aquat. Procedia 2015, 4, 435–442. [Google Scholar] [CrossRef]
- Stevens, C.C.; Thibodeaux, L.J.; Overton, E.B.; Valsaraj, K.T.; Nandakumar, K.; Rao, A.; Walker, N.D. Sea Surface Oil Slick Light Component Vaporization and Heavy Residue Sinking: Binary Mixture Theory and experimental Proof of Concept. Environ. Eng. Sci. 2015, 32, 694–702. [Google Scholar] [CrossRef]
- Carlotto, M.J. Spectral Shape Classification of Landsat Thematic Mapper Imagery. Photogramm. Eng. Remote Sens. 1998, 64, 905–913. [Google Scholar]
- Clark, R.N.; Swayze, G.A.; Leifer, I.; Livo, K.; Kokaly, R.; Hoeffen, T.; Lundeen, S.; Eastwood, M.; Green, R.O.; Pearson, N.; et al. A Method for Quantitative Mapping of Thick Oil Spills Using Imaging Spectroscopy. US Geol. Surv. Open-File Rep. 2010, 1167, 1–51. [Google Scholar] [CrossRef]
- Choate, M.; Rengarajan, R.; Storey, J.; Lubke, M. Geometric Calibration Updates to Landsat 7 ETM+ Instrument for Landsat Collection 2 Products. Remote Sens. 2021, 13, 1638. [Google Scholar] [CrossRef]
- Scarlett, A.G.; Nelson, R.K.; Gagnon, M.M.; Holman, A.I.; Reddy, C.M.; Sutton, P.A.; Grice, K. MV Wakashio grounding incident in Mauritius 2020: The world’s first major spillage of Very Low Sulfur Fuel Oil. Mar. Pollut. Bull. 2021, 171, 112917. [Google Scholar] [CrossRef] [PubMed]
- Garcia, O.; Holmes, J.; Rissing, M.; Jones, R.; Wobus, C.; Svejkovsky, J.; Hess, M. Detection of Oil near Shorelines during the Deepwater Horizon Oil Spill Using Synthetic Aperture Radar (SAR). Remote Sens. 2017, 9, 567. [Google Scholar] [CrossRef]
- Sun, S.; Hu, C. Sun Glint Requirement for the Remote Detection of Surface Oil Films. Geophys. Res. Lett. 2016, 43, 309–316. [Google Scholar] [CrossRef]
- Svejkovsky, J.; Hess, M.; Muskat, J.; Nedwed, T.; McCall, J.; Garcia, O. Characterization of Surface Oil Thickness Distribution Patterns Observed during the Deepwater Horizon (mc-252) Oil Spill with Aerial and Satellite Remote Sensing. Mar. Pollut. Bull. 2016, 110, 162–176. [Google Scholar] [CrossRef]
- Ashournejad, Q.; Mirzaei, S.; Hoseini, S. Exploring the Capabilities of TM and AVIRIS Sensor Images for Oil Spill Detection in Marine and Ocean Waters. World J. Environ. Res. 2017, 7, 72–87. [Google Scholar] [CrossRef]
- Lu, Y.; Zhan, W.; Hu, C. Detecting and Quantifying Oil Slick Thickness by Thermal Remote Sensing: A Ground-based Experiment. Remote Sens. Environ. 2016, 181, 207–217. [Google Scholar] [CrossRef]
- Sun, S.; Hu, C.; Feng, L.; Swayze, G.A.; Holmes, J.; Graettinger, G.; MacDonald, I.; Garcia, O.; Leifer, I. Oil Slick Morphology Derived from AVIRIS Measurements of the Deepwater Horizon Oil Spill: Implications for Spatial Resolution Requirements of Remote Sensors. Mar. Pollut. Bull. 2016, 103, 276–285. [Google Scholar] [CrossRef] [PubMed]
Spectral Shape Pattern | Code Word | Spectral Shape Pattern | Code Word |
---|---|---|---|
0 | 5 | ||
1 | 6 | ||
2 | 7 | ||
3 | 8 | ||
4 |
NO. | Source | Incident | Oil Spill Type |
---|---|---|---|
1 | Landsat 7 | Deepwater Horizon drilling platform explosion | Exploitation leakage |
2 | Landsat 8 | Japanese oil tanker stranding around Mauritius | Ship leakage |
3 | Sentinel-2 | Drilling platform oil spill | Exploitation leakage |
4 | MODIS | Deepwater Horizon drilling platform explosion | Exploitation leakage |
5 | Zhuhai-1 | Natural oil spill in the South China Sea | Natural leakage |
6 | AVIRIS | Deepwater Horizon drilling platform explosion | Exploitation leakage |
7 | Sentinel-2 | Nord Stream 2 pipeline explosion | Pipeline leakage |
Parameter | Experimental Dataset No. | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Source | Landsat 7 | Landsat 8 | Sentinel-2 | MODIS | Zhuhai-1 | AVIRIS | Sentinel-2 |
Bands | 6 | 7 | 9 | 21 | 32 | 192 | 9 |
Alpha | 1.5 | 0.5 | 0.5 | 1 | 1.2 | 1 | 1 |
Beta | 0.2 | 0.5 | 1.2 | 1 | 1.2 | 1 | 0.5 |
Sample Number | Experimental Dataset No. | ||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
Seawater | 140 | 20 | 10 | 33 | 22 | 27 | 21 |
Oil leakage | 187 | 20 | 41 | 58 | 48 | - | - |
Gas leakage/Core area | - | - | - | - | - | - | 10 |
Gas leakage/Surrounding area | - | - | - | - | - | - | 10 |
Emulsions | - | - | - | - | - | 46 | - |
Code 5 | - | - | - | - | - | 63 | - |
Code 4 | - | - | - | - | - | 27 | - |
Sheens (Code 1–3) | - | - | - | - | - | 66 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Tan, B. Multi-Scale Encoding (MSE) Method with Spectral Shape Information (SSI) for Detecting Marine Oil-Gas Leakages. Remote Sens. 2023, 15, 2184. https://doi.org/10.3390/rs15082184
Zhao D, Tan B. Multi-Scale Encoding (MSE) Method with Spectral Shape Information (SSI) for Detecting Marine Oil-Gas Leakages. Remote Sensing. 2023; 15(8):2184. https://doi.org/10.3390/rs15082184
Chicago/Turabian StyleZhao, Dong, and Bin Tan. 2023. "Multi-Scale Encoding (MSE) Method with Spectral Shape Information (SSI) for Detecting Marine Oil-Gas Leakages" Remote Sensing 15, no. 8: 2184. https://doi.org/10.3390/rs15082184
APA StyleZhao, D., & Tan, B. (2023). Multi-Scale Encoding (MSE) Method with Spectral Shape Information (SSI) for Detecting Marine Oil-Gas Leakages. Remote Sensing, 15(8), 2184. https://doi.org/10.3390/rs15082184