Improvement of GOCI-II Water Vapor Absorption Correction through Fusion with GK-2A/AMI Data
Abstract
:1. Introduction
2. Data and Method
2.1. GOCI-II Atmospheric Correction (AC) Algorithm
2.2. Data
2.2.1. GOCI-II Data
2.2.2. AMI and NCEP TPW Data
2.2.3. Rawinsonde Measurements
2.3. Methods
2.3.1. Validation of AMI and NCEP TPW Products in the GOCI-II Observation Area
2.3.2. Primary Ocean-Color Products
2.3.3. Uncertainty Analysis
3. Results
3.1. Validation of NCEP and AMI TPW
3.2. Effects of Different TPW Data on Atmospheric Correction
3.3. Effects of Different TPW Sources on Primary Ocean-Color Products
4. Discussion
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations and Symbols
AC | Atmospheric correction |
AMI | Advanced meteorological imager |
CDOM | Colored dissolved organic matter |
CHL | Chlorophyll-a concentration |
g | Acceleration due to gravity |
G2GS | GOCI-II ground segment |
GCOS | Global climate observing system |
GEMS | Geostationary environmental monitor spectrometer |
GFS | Global forecast system |
GK-2 | Geo-Kompsat-2 |
GOCI | Geostationary ocean-color imager |
GOCI-II | Second geostationary ocean-color imager |
IR | Infra-red |
KST | Korea standard time |
MAPE | Mean absolute percentage error |
mx | Mixing ratio at specific pressure |
NCEP | National Centers for Environmental Prediction |
NIR | Near-infrared |
OC4S algorithm | Ocean chlorophyll 4-band algorithm |
RMSE | Root mean square error |
SeaWiFS | Sea-viewing wide field-of-view sensor |
TOA | Top-of-atmosphere |
TPW | Total precipitable water |
TSS | Total suspended sediment |
UTC | Universal time coordinated |
UV | Ultraviolet |
VIS | Visible |
YOC | Yellow Sea Large Marine Ecosystem Ocean-color Work Group |
τ | The density of water |
Remote sensing reflectance | |
Water reflectance at the sea surface | |
TOA reflectance | |
Rayleigh reflectance in the absence of aerosols and gaseous absorption | |
Aerosol multiple-scattering reflectance in the presence of air molecules without gaseous absorption | |
Diffuse transmittances from the sea surface to the sensor | |
Diffuse transmittances from the sun to the sea surface | |
The upward gaseous transmittance | |
The downward gaseous transmittance | |
The upward (downward) transmittance by ozone | |
The upward (downward) transmittance by water vapor | |
Normalized slant column density | |
The atmospheric pressure at sea level | |
R | Correlation coefficient |
i-th reference value | |
i-th estimation value | |
Bidirectional effect correction function for the Fresnel transmittance at the air–ocean interface | |
The light scattering direction of in-water particles | |
Total suspended sediments derived by YOC algorithm | |
Total suspended sediments derived by switching algorithm | |
Total suspended solids for low turbidity | |
Total suspended solids for high turbidity | |
Standard uncertainty of ocean-color products | |
Sensitivity coefficient of ocean-color products related to TPW | |
Uncertainty in TPW data |
References
- Kravitz, J.; Matthews, M.; Bernard, S.; Griffith, D. Application of Sentinel 3 OLCI for chl-a retrieval over small inland water targets: Successes and challenges. Remote Sens. Environ. 2019, 237, 111562. [Google Scholar] [CrossRef]
- Park, M.-S.; Lee, S.; Ahn, J.-H.; Lee, S.-J.; Choi, J.-K.; Ryu, J.-H. Decadal Measurements of the First Geostationary Ocean Color Satellite (GOCI) Compared with MODIS and VIIRS Data. Remote Sens. 2021, 14, 72. [Google Scholar] [CrossRef]
- Kim, W.; Moon, J.-E.; Park, Y.-J.; Ishizaka, J. Evaluation of chlorophyll retrievals from Geostationary Ocean Color Imager (GOCI) for the North-East Asian region. Remote Sens. Environ. 2016, 184, 482–495. [Google Scholar] [CrossRef]
- Tan, X.; Sun, B.; Wang, G.; Cheng, T.; Huang, K.; Shen, F. Consecutive retrieval of aerosol optical depth and total suspended solid concentration in turbid coastal water of Eastern China. J. Quant. Spectrosc. Radiat. Transf. 2022, 287, 108231. [Google Scholar] [CrossRef]
- Doxaran, D.; Lamquin, N.; Park, Y.-J.; Mazeran, C.; Ryu, J.-H.; Wang, M.; Poteau, A. Retrieval of the seawater reflectance for suspended solids monitoring in the East China Sea using MODIS, MERIS and GOCI satellite data. Remote Sens. Environ. 2013, 146, 36–48. [Google Scholar] [CrossRef]
- Wei, J.; Wang, M.; Jiang, L.; Yu, X.; Mikelsons, K.; Shen, F. Global Estimation of Suspended Particulate Matter from Satellite Ocean Color Imagery. J. Geophys. Res. Oceans 2021, 126, e2021JC017303. [Google Scholar] [CrossRef]
- Cao, F.; Miller, W.L. A new algorithm to retrieve chromophoric dissolved organic matter (CDOM) absorption spectra in the UV from ocean color. J. Geophys. Res. Oceans 2015, 120, 496–516. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, F.; Sokoletsky, L.; Sun, X. Validation and Calibration of QAA Algorithm for CDOM Absorption Retrieval in the Changjiang (Yangtze) Estuarine and Coastal Waters. Remote Sens. 2017, 9, 1192. [Google Scholar] [CrossRef]
- Al-Kharusi, E.S.; Tenenbaum, D.E.; Abdi, A.M.; Kutser, T.; Karlsson, J.; Bergström, A.K.; Berggren, M. Large-Scale Retrieval of Coloured Dissolved Organic Matter in Northern Lakes Using Sentinel-2 Data. Remote Sens. 2020, 12, 157. [Google Scholar] [CrossRef]
- Frouin, R.J.; Franz, B.A.; Ibrahim, A.; Knobelspiesse, K.; Ahmad, Z.; Cairns, B.; Chowdhary, J.; Dierssen, H.M.; Tan, J.; Dubovik, O.; et al. Atmospheric Correction of Satellite Ocean-Color Imagery during the PACE Era. Front. Earth Sci. 2019, 7, 145. [Google Scholar] [CrossRef]
- Melin, F.; Colandrea, P.; De Vis, P.; Hunt, S.E. Sensitivity of Ocean Color Atmospheric Correction to Uncertainties in Ancillary Data: A Global Analysis with SeaWiFS Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–18. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J.; Ryu, J.-H.; Lee, B.; Oh, I.S. Development of atmospheric correction algorithm for Geostationary Ocean Color Imager (GOCI). Ocean Sci. J. 2012, 47, 247–259. [Google Scholar] [CrossRef]
- Wang, M. A Sensitivity Study of the SeaWiFS Atmospheric Correction Algorithm Effects of Spectral Band Variations. Remote Sens. Environ. 1999, 67, 348–359. [Google Scholar] [CrossRef]
- Gordon, H.R. Evolution of Ocean Color Atmospheric Correction: 1970–2005. Remote Sens. 2021, 13, 5051. [Google Scholar] [CrossRef]
- Mograne, M.A.; Jamet, C.; Loisel, H.; Vantrepotte, V.; Mériaux, X.; Cauvin, A. Evaluation of Five Atmospheric Correction Algorithms over French Optically-Complex Waters for the Sentinel-3A OLCI Ocean Color Sensor. Remote Sens. 2019, 11, 668. [Google Scholar] [CrossRef]
- Wang, M.; Franz, B. Comparing the ocean color measurements between MOS and SeaWiFS: A vicarious intercalibration approach for MOS. IEEE Trans. Geosci. Remote Sens. 2000, 38, 184–197. [Google Scholar] [CrossRef]
- Gordon, H.; Voss, K. MODIS Normalized Water-Leaving Radiance Algorithm Theoretical Basis Document (MOD 18), 5th ed.; NASA: Washington, DC, USA, 2004.
- Ramachandran, S.; Wang, M. Near-Real-Time Ocean Color Data Processing Using Ancillary Data from the Global Forecast System Model. IEEE Trans. Geosci. Remote Sens. 2010, 49, 1485–1495. [Google Scholar] [CrossRef]
- Tzortziou, M.; Parker, O.; Lamb, B.; Herman, J.R.; Lamsal, L.; Stauffer, R.; Abuhassan, N. Atmospheric Trace Gas (NO2 and O3) Variability in South Korean Coastal Waters, and Implications for Remote Sensing of Coastal Ocean Color Dynamics. Remote Sens. 2018, 10, 1587. [Google Scholar] [CrossRef]
- Tzortziou, M.; Herman, J.R.; Ahmad, Z.; Loughner, C.P.; Abuhassan, N.; Cede, A. Atmospheric NO2 dynamics and impact on ocean color retrievals in urban nearshore regions. J. Geophys. Res. Oceans 2014, 119, 3834–3854. [Google Scholar] [CrossRef]
- Ahmad, Z.; McClain, C.R.; Herman, J.R.; Franz, B.A.; Kwiatkowska, E.J.; Robinson, W.D.; Bucsela, E.J.; Tzortziou, M. Atmospheric correction for NO2 absorption in retrieving water-leaving reflectances from the SeaWiFS and MODIS measurements. Appl. Opt. 2007, 46, 6504. [Google Scholar] [CrossRef]
- Lee, S.J.; Lee, K.S.; Han, T.H.; Moon, J.E.; Bae, S.; Choi, J.K. Introduction on the products and the quality management plans for GOCI-II. Korean J. Remote Sens. 2021, 37, 1245–1257. [Google Scholar]
- Lee, K.-S.; Chung, S.-R.; Lee, C.; Seo, M.; Choi, S.; Seong, N.-H.; Jin, D.; Kang, M.; Yeom, J.-M.; Roujean, J.-L.; et al. Development of Land Surface Albedo Algorithm for the GK-2A/AMI Instrument. Remote Sens. 2020, 12, 2500. [Google Scholar] [CrossRef]
- Choi, W.J.; Moon, K.J.; Yoon, J.; Cho, A.; Kim, S.; Lee, S.; Ko, D.H.; Kim, J.; Ahn, M.H.; Kim, D.R.; et al. Introducing the Geostationary Environment Monitoring Spectrometer. J. Appl. Rem. Sens. 2018, 12, 0044005. [Google Scholar] [CrossRef]
- Choi, J.K.; Park, M.S.; Han, K.S.; Kim, H.C.; Im, J. One year of GOCI-II launch present and future. Korean J. Remote Sens. 2021, 37, 1229–1234. [Google Scholar]
- Wang, M.; Gordon, H.R. A simple, moderately accurate, atmospheric correction algorithm for SeaWiFS. Remote Sens. Environ. 1994, 50, 231–239. [Google Scholar] [CrossRef]
- Bailey, S.W.; Franz, B.A.; Werdell, P.J. Estimation of near-infrared water-leaving reflectance for satellite ocean color data processing. Opt. Express 2010, 18, 7521–7527. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J.; Kim, W.; Lee, B. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans. Opt. Express 2016, 24, 29659–29669. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J.; Fukushima, H. Comparison of Aerosol Reflectance Correction Schemes Using Two Near-Infrared Wavelengths for Ocean Color Data Processing. Remote Sens. 2018, 10, 1791. [Google Scholar] [CrossRef]
- Fan, Y.; Li, W.; Chen, N.; Ahn, J.-H.; Park, Y.-J.; Kratzer, S.; Schroeder, T.; Ishizaka, J.; Chang, R.; Stamnes, K. OC-SMART: A machine learning based data analysis platform for satellite ocean color sensors. Remote Sens. Environ. 2020, 253, 112236. [Google Scholar] [CrossRef]
- National Meteorological Satellite Center Home Page. Available online: https://nmsc.kma.go.kr/homepage/html/base/cmm/selectPage.do?page=static.edu.atbdGk2a (accessed on 10 August 2022).
- NCEP. GFS Website. Available online: https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_systems/gfs.php (accessed on 11 August 2022).
- Jabbari, A.; Bae, D.-H. Application of Artificial Neural Networks for Accuracy Enhancements of Real-Time Flood Forecasting in the Imjin Basin. Water 2018, 10, 1626. [Google Scholar] [CrossRef]
- Lee, K.S.; Ahn, J.H.; Park, M.S. GOCI-II Capability of Improving the Accuracy of Ocean Color Products through Fusion with GK-2A/AMI. Korean J. Remote Sens. 2021, 37, 1295–1305. [Google Scholar]
- Ahn, J.-H.; Park, Y.-J.; Kim, W.; Lee, B.; Oh, I.S. Vicarious calibration of the Geostationary Ocean Color Imager. Opt. Express 2015, 23, 23236–23258. [Google Scholar] [CrossRef]
- Ahn, J.-H.; Park, Y.-J. Estimating Water Reflectance at Near-Infrared Wavelengths for Turbid Water Atmospheric Correction: A Preliminary Study for GOCI-II. Remote Sens. 2020, 12, 3791. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanré, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- United States Committee on Extension to the Standard Atmosphere. U.S. Standard Atmosphere 1976; U.S. Government Printing Office: Washington, DC, USA, 1976.
- National Ocean Color Satellite Center Homepage. Available online: https://www.nosc.go.kr/eng/ (accessed on 6 February 2023).
- Lee, S.J.; Ahn, M.-H.; Chung, S.-R. Atmospheric Profile Retrieval Algorithm for Next Generation Geostationary Satellite of Korea and Its Application to the Advanced Himawari Imager. Remote Sens. 2017, 9, 1294. [Google Scholar] [CrossRef]
- GOCI-II Atmospheric Correction Algorithm Theoretical Basis Document. Available online: https://www.nosc.go.kr/eng/board/actionBoardViewBoard0011.do?SEARCH_CODE=&SEARCH_WORD=&SEARCH_CATEGORY=&BOARD_SNO=20&boardSelectPage=1 (accessed on 7 February 2023).
- Zhang, Y.; Li, J.; Li, Z.; Zheng, J.; Wu, D.; Zhao, H. FENGYUN-4A advanced geosynchronous radiation imager layered precipitable water vapor products’ comprehensive evaluation based on quality control system. Atmosphere 2022, 13, 290. [Google Scholar] [CrossRef]
- Loew, A.; Bell, W.; Brocca, L.; Bulgin, C.E.; Burdanowitz, J.; Calbet, X.; Donner, R.V.; Ghent, D.; Gruber, A.; Kaminski, T.; et al. Validation practices for satellite-based Earth observation data across communities. Rev. Geophys. 2017, 55, 779–817. [Google Scholar] [CrossRef]
- Siswanto, E.; Tang, J.; Yamaguchi, H.; Yuhwan, A.; Ishizaka, J.; Yoo, S.; Sangwoo, K.; Kiyomoto, Y.; Yamada, K.; Chiang, C.; et al. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved or-ganic matter absorption coefficient in the Yellow and East China Seas. J. Oceanogr. 2011, 67, 627–650. [Google Scholar] [CrossRef]
- GOCI-II Absorption of Colored Dissolved Organic Matter Theoretical Basis Document. Available online: https://www.nosc.go.kr/eng/board/actionBoardViewBoard0011.do?SEARCH_CODE=&SEARCH_WORD=&SEARCH_CATEGORY=&BOARD_SNO=15&boardSelectPage=1 (accessed on 7 February 2023).
- Liu, G.; Lin, L.; Song, K.; Li, Y.; Lyu, H.; Wen, Z.; Fang, C.; Bi, S.; Sun, X.; Wang, Z.; et al. An OLCI-based algorithm for semi-empirically partitioning absorption coefficient and estimating chlorophyll a concentration in various turbid case-2 waters. Remote Sens. Environ. 2020, 239, 111648. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar]
- NASA. NASA Ocean Color. Available online: https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/#sec_2 (accessed on 23 April 2020).
- Shuai, Y.; Tuerhanjiang, L.; Shao, C.; Gao, F.; Zhou, Y.; Xie, D.; Liu, T.; Liang, J.; Chu, N. Re-understanding of land surface albedo and related terms in satellite-based retrievals. Big Earth Data 2020, 4, 45–67. [Google Scholar] [CrossRef]
- ENV 13005: 2008; Guide to the Expression of Uncertainty in Measurement. ISO: Geneva, Switzerland, 2008.
- Kim, W.; Moon, J.-E.; Ahn, J.-H.; Park, Y.-J. Evaluation of Stray Light Correction for GOCI Remote Sensing Reflectance Using in Situ Measurements. Remote Sens. 2016, 8, 378. [Google Scholar] [CrossRef]
- Concha, J.; Mannino, A.; Franz, B.; Kim, W. Uncertainties in the Geostationary Ocean Color Imager (GOCI) Remote Sensing Reflectance for Assessing Diurnal Variability of Biogeochemical Processes. Remote Sens. 2019, 11, 295. [Google Scholar] [CrossRef]
- Van Oostende, M.; Hieronymi, M.; Krasemann, H.; Baschek, B.; Röttgers, R. Correction of inter-mission inconsistencies in merged ocean colour satellite data. Front. Remote Sens. 2022, 3, 882418. [Google Scholar] [CrossRef]
Band (Wavelength) | Coefficient | b0 | b1 | b2 | b3 |
---|---|---|---|---|---|
7 (620 nm) | a1 | −0.10883 | 0.15571 | −0.07120 | 0.00984 |
a2 | 0.16363 | −0.14028 | 0.00169 | 0.01588 | |
a3 | 0.07286 | −0.46455 | 0.40572 | −0.10403 | |
a4 | −0.00074 | 0.00121 | −0.00062 | 2.71837 | |
8 (660 nm) | a1 | 0.45515 | −2.36725 | 2.27751 | −0.62727 |
a2 | −1.18466 | 5.04707 | −4.51584 | 1.18857 | |
a3 | 1.23797 | −4.13265 | 3.13151 | −0.73864 | |
a4 | −0.01231 | 0.01268 | −0.00183 | 2.71741 | |
9 (680 nm) | a1 | −0.00710 | 0.01315 | −0.00761 | 0.00131 |
a2 | 0.01882 | −0.02768 | 0.01214 | −0.00122 | |
a3 | 0.00810 | −0.08087 | 0.07458 | −0.01982 | |
a4 | −0.00025 | 0.00066 | −0.00057 | 2.71845 | |
10 (709 nm) | a1 | −2.31743 | 3.25378 | −1.44822 | 0.18822 |
a2 | 2.79502 | −1.88244 | −0.59034 | 0.46462 | |
a3 | 1.37638 | −6.47705 | 5.51278 | −1.40445 | |
a4 | −0.02817 | 0.05269 | −0.03369 | 2.72560 | |
11 (745 nm) | a1 | −0.40148 | −0.84316 | 1.42884 | −0.47871 |
a2 | −0.11748 | 3.58159 | −4.02118 | 1.18320 | |
a3 | 1.36350 | −5.09311 | 4.14129 | −1.02827 | |
a4 | −0.02499 | 0.04092 | −0.02223 | 2.72225 | |
12 (865 nm) | a1 | −1.25817 | 1.61226 | −0.57056 | 0.02898 |
a2 | 1.35500 | −0.46605 | −0.85665 | 0.40739 | |
a3 | 0.74989 | −3.53807 | 3.05438 | −0.78668 | |
a4 | −0.02085 | 0.04073 | −0.02682 | 2.72422 |
Band | Central Wavelength (nm) | Bandwidth (nm) | Water Vapor Absorption |
---|---|---|---|
1 | 380 | 20 | X |
2 | 412 | 20 | X |
3 | 440 | 20 | X |
4 | 490 | 20 | X |
5 | 512 | 20 | X |
6 | 555 | 20 | X |
7 | 620 | 20 | O (0.9961) |
8 | 660 | 20 | O (0.9816) |
9 | 680 | 10 | O (0.9993) |
10 | 709 | 10 | O (0.9635) |
11 | 745 | 20 | O (0.9723) |
12 | 865 | 40 | O (0.9951) |
Parameter | Uncertainty (AMI) | Uncertainty (NCEP) | Parameter | Uncertainty (AMI) | Uncertainty (NCEP) |
---|---|---|---|---|---|
(412 nm) | 0.00016 sr−1 (2.07%) | 0.00047 sr−1 (6.18%) | (680 nm) | 4.40 × 10−5 sr−1 (1.71%) | 0.00013 sr−1 (5.17%) |
(443 nm) | 0.00013 sr−1 (1.43%) | 0.00040 sr−1 (4.27%) | (709 nm) | 2.57 × 10−5 sr−1 (2.22%) | 8.35 × 10−5 sr−1 (6.75%) |
(490 nm) | 0.00010 sr−1 (1.00%) | 0.00031 sr−1 (3.00%) | (745 nm) | 1.35 × 10−5 sr−1 (4.18%) | 4.08 × 10−5 sr−1 (12.61%) |
(512 nm) | 9.71 × 10−5 sr−1 (0.99%) | 0.00029 sr−1 (2.99%) | (865 nm) | 8.17 × 10−6 sr−1 (4.81%) | 2.47 × 10−5 sr−1 (14.54%) |
(555 nm) | 7.41 × 10−5 sr−1 (0.84%) | 0.00022 sr−1 (2.52%) | CHL | 0.01422 mg/m3 (1.10%) | 0.04116 mg/m3 (3.18%) |
(620 nm) | 8.33 × 10−5 sr−1 (2.02%) | 0.00025 sr−1 (6.14%) | CDOM | 0.00065 m−1 (0.96%) | 0.00191 m−1 (2.81%) |
(660 nm) | 2.28 × 10−5 sr−1 (0.82%) | 6.83 × 10−5 sr−1 (2.44%) | TSS | 0.01918 g/m3 (0.81%) | 0.05721 g/m3 (2.40%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, K.-S.; Park, M.-S.; Choi, J.-K.; Ahn, J.-H. Improvement of GOCI-II Water Vapor Absorption Correction through Fusion with GK-2A/AMI Data. Remote Sens. 2023, 15, 2124. https://doi.org/10.3390/rs15082124
Lee K-S, Park M-S, Choi J-K, Ahn J-H. Improvement of GOCI-II Water Vapor Absorption Correction through Fusion with GK-2A/AMI Data. Remote Sensing. 2023; 15(8):2124. https://doi.org/10.3390/rs15082124
Chicago/Turabian StyleLee, Kyeong-Sang, Myung-Sook Park, Jong-Kuk Choi, and Jae-Hyun Ahn. 2023. "Improvement of GOCI-II Water Vapor Absorption Correction through Fusion with GK-2A/AMI Data" Remote Sensing 15, no. 8: 2124. https://doi.org/10.3390/rs15082124
APA StyleLee, K. -S., Park, M. -S., Choi, J. -K., & Ahn, J. -H. (2023). Improvement of GOCI-II Water Vapor Absorption Correction through Fusion with GK-2A/AMI Data. Remote Sensing, 15(8), 2124. https://doi.org/10.3390/rs15082124