Efficiency Study of Combined UAS Photogrammetry and Terrestrial LiDAR in 3D Modeling for Maintenance and Management of Fill Dams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Method Workflow
2.3. Data Acquisition
2.4. UAS Photogrammetry
2.5. TLS Survey
2.6. Combination of UAS-SfM and TLS Point Clouds
3. Results
3.1. Evaluation of Accuracy and Reproducibility of UAS 3D Point Cloud
3.2. Evaluation of Accuracy and Reproducibility of TLS 3D Point Cloud
3.3. Evaluation of the Accuracy and Reproducibility of UAS–TLS 3D Point Cloud
3.4. Displacement Detection
4. Discussion
5. Conclusions
- A 3D point cloud was constructed based on image data acquired in summer and winter to review its effectiveness for the quantitative maintenance of fill dams using the UAS. The comparative analysis confirmed that data obtained in winter exhibited high efficiency.
- In soil structures such as fill dams, the Z-coordinate error of the UAS-SfM-based 3D point cloud is larger than that of the X- and Y-coordinates. Furthermore, data gaps occurred because of obstacles such as trees. Therefore, an advanced 3D point cloud was constructed by combining it with a TLS-based 3D point cloud. In addition, the coordinate accuracies of the X-, Y-, and Z-axes were improved by combining the two datasets.
- The TLS-based 3D point cloud exhibited a shape reproducibility of 74.59% because of occlusions such as trees and buildings, equipment access, and scanning angle. The shape reproducibility rate of the UAS-SfM-based 3D point cloud was improved to 98.53% by reconstructing it as a 3D point cloud based on the combination analysis.
- To detect the numerical values of ground settlement and heaving, the settlement and heaving areas of a 3D point cloud based on the combination analysis were reviewed using the cross-sectional data collected from a contact survey. Consequently, ground changes in four regions of the downstream slope, seven regions of the dam crest, and four regions of the upstream slope were confirmed. Moreover, quantitative values, namely heaving and settlement volumes, were calculated.
- This study examined the effectiveness of the UAS, TLS, and a combination analysis for 3D-model-based maintenance of fill dams. The advantages of each method were highlighted, and the effectiveness of complementing the disadvantages was verified using a data-combined 3D point cloud.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Korea Authority of Land & Infrastructure Safety. 2021 Facility Statistical Yearbook; Korea Authority of Land & Infrastructure Safety: Sejong, Republic of Korea, 2021. [Google Scholar]
- Fathi, H.; Dai, F.; Lourakis, M. Automated as-built 3d reconstruction of civil infrastructure using computer vision: Achievements, opportunities, and challenges. Adv. Eng. Inform. 2015, 29, 149–161. [Google Scholar] [CrossRef]
- Zhu, X.; Bao, T.; Yeoh, J.K.W.; Jia, N.; Li, H. Enhancing dam safety evaluation using dam digital twins. Struct. Infrastruct. Eng. 2021, 10, 904–920. [Google Scholar] [CrossRef]
- El-Dim, M.N.; Pereira, P.F.; Martins, J.P.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Khaloo, A.; Lattanzi, D.; Jackimowicz, A.; Devaney, C. Utility UAV and 3D computer vision for visual inspection of a large gravity dam. Front. Built Environ. 2018, 4, 31. [Google Scholar] [CrossRef] [Green Version]
- Zang, Y.; Yang, B.; Li, J.; Guan, H. An accurate TLS and UAV image point clouds registration method for deformation detection of chaotic hillside areas. Remote Sens. 2019, 11, 647. [Google Scholar] [CrossRef] [Green Version]
- Samodra, G.; Ramadhan, M.F.; Sartohadi, J.; Setiawan, M.A.; Christanto, N.; Sukmawijaya, A. Characterization of displacement and internal structure of landslides from multitemporal UAV and ERT imaging. Landslides 2020, 17, 2455–2468. [Google Scholar] [CrossRef]
- Yan, Y.; Ma, S.; Yin, S.; Hu, S.; Long, Y.; Xie, C.; Jiang, H. Detection and numerical simulation of potential hazard in oil pipeline areas based on UAV surveys. Front. Earth Sci. 2021, 9, 665478. [Google Scholar] [CrossRef]
- Mancini, F.; Dubbini, M.; Gattelli, M.; Stecchi, F.; Fabbri, S.; Gabbianelli, G. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sens. 2013, 5, 6880–6898. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Chen, A.Y.; Huang, Y.N.; Han, J.Y.; Lai, J.S.; Kang, S.C. A Review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering. Smart Struct. Syst. 2014, 13, 1065–1094. [Google Scholar] [CrossRef]
- Lindner, G.; Schraml, K.; Mansberger, R.; Hübl, J. UAV monitoring and documentation of a large landslide. Appl. Geomat. 2015, 8, 1–11. [Google Scholar] [CrossRef]
- Ma, S.; Xu, C.; Shao, X.; Zhang, P.; Liang, X.; Tian, Y. Geometric and kinematic features of a landslide in Mabian, Sichuan, China, derived from UAV photography. Landslides 2018, 16, 373–381. [Google Scholar] [CrossRef]
- Guisado-Pintado, E.; Jackson, D.W.T.; Rogers, D. 3D mapping efficacy of a drone and terrestrial laser scanner over a temperate beach-dune zone. Geomorphology 2019, 328, 157–172. [Google Scholar] [CrossRef]
- Lu, H.; Ma, L.; Fu, X.; Liu, C.; Wang, Z.; Tang, M.; Li, N. Landslides information extraction using object-oriented image analysis paradigm based on deep learning and transfer learning. Remote Sens. 2020, 12, 752. [Google Scholar] [CrossRef] [Green Version]
- Yu, M.; Huang, Y.; Zhou, J.; Mao, L. Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion. Environ. Earth Sci. 2017, 76, 520. [Google Scholar] [CrossRef]
- Lee, J.; Min, S.S. Assessment of positioning accuracy of UAV photogrammetry based on RTK-GPS. J. Korea Acad. –Ind. Coop. Soc. 2018, 19, 63–68. [Google Scholar] [CrossRef]
- Rangel, J.M.G.; Gonçalves, G.R.; Pérez, J.A. The impact of number and spatial distribution of GCPs on the positional accuracy of geospatial products derived from low-cost UASs. Int. J. Remote Sens. 2018, 39, 7154–7171. [Google Scholar] [CrossRef]
- Jaud, M.; Bertin, S.; Beauverger, M.; Augereau, E.; Delacourt, C. RTK GNSS-assisted terrestrial SfM photogrammetry without GCP: Application to coastal morphodynamics monitoring. Remote Sens. 2020, 12, 1889. [Google Scholar] [CrossRef]
- Mao, Z.; Hu, S.; Wang, N.; Long, Y. Precision evaluation and fusion of topographic data based on UAVs and TLS surveys of a loess landslide. Front. Earth Sci. 2021, 9, 801293. [Google Scholar] [CrossRef]
- Yang, D.; Qiu, H.; Hu, S.; Pei, Y.; Wang, X.; Du, C.; Long, Y.; Cao, M. Influence of successive landslides on topographic changes revealed by multitemporal high-resolution UAS-based DEM. Catena 2021, 202, 105229. [Google Scholar] [CrossRef]
- Tang, P.; Huber, D.; Akinci, B.; Lipman, R.; Lytle, A. Automatic reconstruction of as-built building information models from laser-scanned point clouds: A review of related techniques. Autom. Constr. 2010, 19, 829–843. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, C.; Li, J.; Zhang, W.; Xi, X.; Wang, C.; Dong, P. Building segmentation and modeling from airborne LiDAR data. Int. J. Digit. Earth 2015, 8, 694–709. [Google Scholar] [CrossRef]
- Brede, B.; Calders, K.; Lau, A.; Raumonen, P.; Bartholomeus, H.M.; Herold, M.; Kooistra, L. Non-destructive tree volume estimation through quantitative structure modelling: Comparing UAV laser scanning with terrestrial LIDAR. Remote Sens. Environ. 2019, 233, 111355. [Google Scholar] [CrossRef]
- Šašak, J.; Gallay, M.; Kaňuk, J.; Hofierka, J.; Minár, J. Combined use of terrestrial laser scanning and UAV photogrammetry in mapping alpine terrain. Remote Sens. 2019, 11, 2154. [Google Scholar] [CrossRef] [Green Version]
- Wijesingha, J.; Moeckel, T.; Hensgen, F.; Wachendorf, M. Evaluation of 3D point cloud-based models for the prediction of grassland biomass. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 352–359. [Google Scholar] [CrossRef]
- Lee, C.-H.; Lee, J.-H.; Kim, D.-J.; Kang, J.-O.; Kwon, Y.-H. A study on damage factor analysis of slope anchor based on 3D numerical model combining UAS image and terrestrial LiDAR. J. Korean Geotechn. Soc. 2022, 38, 5–24. [Google Scholar]
- Wefelscheid, C.; Hansch, R.; Hellwich, O. Three-dimensional building reconstruction using images obtained by unmanned aerial vehicles. Int. Arch. Photogramm. Remote Sens. Spatial Inform. Sci. 2011, XXXVIII-1, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Buffi, G.; Manciola, P.; Grassi, S.; Barberini, M.; Gambi, A. Survey of the Ridracoli dam: UAV–based photogrammetry and traditional topographic techniques in the inspection of vertical structures. Geomat. Nat. Haz. Risk 2017, 8, 1562–1579. [Google Scholar] [CrossRef] [Green Version]
- Korumaz, M.; Betti, M.; Conti, A.; Tucci, G.; Bartoli, G.; Bonora, V.; Güleç Korumaz, A.; Fiorini, L. An integrated terrestrial laser scanner (TLS), deviation analysis (DA) and finite element (FE) approach for health assessment of historical structures. A minaret case study. Eng. Struct. 2017, 153, 224–238. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F. Use of UAV-photogrammetry for quasi-vertical wall surveying. Remote Sens. 2020, 12, 2221. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Mesas-Carrascosa, F.-J.; García-Ferrer, A.; Pérez-Porras, F.-J. Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points. Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 1–10. [Google Scholar] [CrossRef]
- Medjkane, M.; Maquaire, O.; Costa, S.; Roulland, T.; Letortu, P.; Fauchard, C.; Antoine, R.; Davidson, R. High-resolution monitoring of complex coastal morphology changes: Cross-efficiency of SfM and TLS-based survey (Vaches-Noires Cliffs, Normandy, France). Landslides 2018, 15, 1097–1108. [Google Scholar] [CrossRef]
- Bakirman, T.; Bayram, B.; Akpinar, B.; Karabulut, M.F.; Bayrak, O.C.; Yigitoglu, A.; Seker, D.Z. Implementation of ultra-light UAV systems for cultural heritage documentation. J. Cult. Herit. 2020, 44, 174–184. [Google Scholar] [CrossRef]
- Peppa, M.V.; Mills, J.P.; Moore, P.; Miller, P.E.; Chambers, J.E. Accuracy assessment of a UAV-based landslide monitoring system. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 895–902. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kang, J.; Lee, S. A study on the improvement of UAV based 3D point cloud spatial object location accuracy using road information. Korean J. Remote Sens. 2019, 35, 705–714. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Agüera-Puntas, M.; Martínez-Carricondo, P.; Mancini, F.; Carvajal, F. Effects of point cloud density, interpolation method and grid size on derived digital terrain model accuracy at micro topography level. Int. J. Remote Sens. 2020, 41, 8281–8299. [Google Scholar] [CrossRef]
- Moon, D.-Y. An Optimization Method to Generate 3D Earthworks World Model Using Hybrid (UAV & TLS) Point Cloud Data. Ph.D. Thesis, Sungkyunkwan University, Seoul, Republic of Korea, 2019. [Google Scholar]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and airborne LiDAR data for interpreting kinematic evolution of landslide movements: The case study of the Montescaglioso landslide (Southern Italy). Geosciences 2019, 9, 248. [Google Scholar] [CrossRef] [Green Version]
- Kamnik, R.; Nekrep Perc, M.; Topolšek, D. Using the scanners and drone for comparison of point cloud accuracy at traffic accident analysis. Accid. Anal. Prev. 2020, 135, 105391. [Google Scholar] [CrossRef]
- Tsunetaka, H.; Hotta, N.; Hayakawa, Y.S.; Imaizumi, F. Spatial accuracy assessment of unmanned aerial vehicle-based structures from motion multi-view stereo photogrammetry for geomorphic observations in initiation zones of debris flows, Ohya landslide, Japan. Prog. Earth Planet. Sci. 2020, 7, 24. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, C. Deformation monitoring of earth-rock dams based on three-dimensional laser scanning technology. Chin. J. Geotech. Eng. 2014, 36, 2345–2350. [Google Scholar] [CrossRef]
- Hendrickx, H.; De Sloover, L.; Stal, C.; Delaloye, R.; Nyssen, J.; Frankl, A. Talus slope geomorphology investigated at multiple time scales from high-resolution topographic surveys and historical aerial photographs (Sanetsch Pass, Switzerland). Earth Surf. Process. Landf. 2020, 45, 3653–3669. [Google Scholar] [CrossRef]
- Li, Y.; Liu, P.; Li, H.; Huang, F. A comparison method for 3D laser point clouds in displacement change detection for arch dams. ISPRS Int. J. Geo-Inf. 2021, 10, 184. [Google Scholar] [CrossRef]
- Henriques, M.J.; Roque, D. Unmanned aerial vehicles (UAV) as a support to visual inspections of concrete dams. In Proceedings of the Second International Dam World Conference, Laboratorio Nacional De Engenharia Civil, Lisbon, Portugal, 21–24 April 2015. [Google Scholar]
- Besl, P.J.; McKay, N.D. A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef] [Green Version]
- Balsa-Barreiro, J.; Fritsch, D. Generation of visually aesthetic and detailed 3D models of historical cities by using laser scanning and digital photogrammetry. Digit. Appl. Archaeol. Cult. Herit. 2018, 8, 57–64. [Google Scholar] [CrossRef]
- Wu, L.; Wang, G.; Hu, Y. Iterative closest point registration for fast point feature histogram features of a volume density optimization algorithm. Meas. Control 2020, 53, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Mesas-Carrascosa, F.-J.; Notario García, M.D.; Meroño de Larriva, J.E.; García-Ferrer, A. An analysis of the influence of flight parameters in the generation of unmanned aerial vehicle (UAV) orthomosaicks to survey archaeological areas. Sensors 2016, 16, 1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-J.; Cho, G.-S. Comparative accuracy of terrestrial LiDAR and unmanned aerial vehicles for 3D modeling of cultural properties. J. Cadastre Land Inf. 2017, 47, 1. [Google Scholar]
- Kang, J.O.; Lee, Y.C. Construction of 3D spatial information of vertical structure by combining UAS and terrestrial LiDAR. J. Cadastre Land Inf. 2019, 49, 57–66. [Google Scholar]
- Hayakawa, Y.C.; Obanawa, H. Volumetric change detection in bedrock coastal cliffs using terrestrial laser scanning and UAS-based SfM. Sensors 2020, 20, 3403. [Google Scholar] [CrossRef]
- Son, S.W.; Kim, D.W.; Sung, W.G.; Yu, J.J. Integrating UAV and TLS approaches for environmental management: A case study of a waste stockpile area. Remote Sens. 2020, 12, 1615. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. Combination of HBIM and UAV photogrammetry for modelling and documentation of forgotten heritage. Case study: Isabel II dam in Níjar (Almería, Spain). Herit. Sci. 2021, 9, 95. [Google Scholar] [CrossRef]
- Zhao, S.; Kang, F.; Li, J.; Ma, C. Structural health monitoring and inspection of dams based on UAV photogrammetry with image 3D reconstruction. Autom. Constr. 2021, 130, 103832. [Google Scholar] [CrossRef]
- Ridolfi, E.; Buffi, G.; Venturi, S.; Manciola, P. Accuracy analysis of a dam model from drone surveys. Sensors 2017, 17, 1777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.-D.; Huang, K.-S.; Tsai, H.-P. Monitoring and measurement of an artificial landslide dam using UAV images and image-based modeling (MCSSE). DEStech Trans. Comput. Sci. Eng. 2016, 357–362. [Google Scholar] [CrossRef]
- Ramos-Alcázar, L.; Marchamalo-Sacristán, M.; Martínez-Marín, R. Comparing dam movements obtained with terrestrial laser scanner (TLS) data against direct pendulums records. Rev. Fac. Ing. Univ. Antioq. 2015, 76, 99–106. [Google Scholar] [CrossRef]
- Ramos-Alcázar, L.; Marchamalo-Sacristán, M.; Martínez-Marín, R. Estimating and plotting TLS midrange precisions in field conditions: Application to dam monitoring. Int. J. Civ. Eng. 2017, 15, 299–307. [Google Scholar] [CrossRef]
- Scaioni, M.; Marsella, M.; Crosetto, M.; Tornatore, V.; Wang, J. Geodetic and remote-sensing sensors for dam deformation monitoring. Sensors 2018, 18, 3682. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lin, X. Advances in fusion of optical imagery and LiDAR point cloud applied to photogrammetry and remote sensing. Int. J. Image Data Fus. 2017, 8, 1–31. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport. Special Act on the Safety Control and Maintenance of Establishments; KIRL: Sejong, Republic of Korea, 2021. [Google Scholar]
- Ji, H.; Luo, X. 3D scene reconstruction of landslide topography based on data fusion between laser point cloud and UAV image. Environ. Earth Sci. 2019, 78, 534. [Google Scholar] [CrossRef]
- Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P. Accuracy of digital surface models and orthophotos derived from unmanned aerial vehicle photogrammetry. J. Surv. Eng. 2016, 143, 4016025. [Google Scholar] [CrossRef]
- Pepe, M.; Fregonese, L.; Scaioni, M. Planning airborne photogrammetry and remote-sensing missions with modern platforms and sensors. Eur. J. Remote Sens. 2018, 51, 412–436. [Google Scholar] [CrossRef] [Green Version]
- Mikhail, E.; Bethel, J.; McGlone, J. Introduction to Modern Photogrammetry; John Wiley & Sons: New York, NY, USA, 2001; p. 496. [Google Scholar]
- Fraser, C.S. Network Design. Close Range Photogrammetry and Machine Vision; Atkinson, K.B., Ed.; Whittles Publishing: Caithness, Fingland, 1996; pp. 256–281. [Google Scholar]
- Aber, J.; Marzolff, I.; Ries, J.B. Small Format Aerial Photography: Principles, Techniques and Geoscience Applications; Elsevier: Amsterdam, The Netherlands, 2016; p. 394. [Google Scholar]
- Sanz-Ablanedo, E.; Chandler, J.H.; Rodríguez-Pérez, J.R.; Ordóñez, C. Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used. Remote Sens. 2018, 10, 1606. [Google Scholar] [CrossRef] [Green Version]
- Neugirg, F.; Stark, M.; Kaiser, A.; Vlacilova, M.; Della Seta, M.; Vergari, F.; Schmidt, J.; Becht, M.; Haas, F. Erosion processes in Calanchi in the Upper Orcia Valley, Southern Tuscany, Italy based on multitemporal high-resolution terrestrial LiDAR and UAV surveys. Geomorphology 2016, 269, 8–22. [Google Scholar] [CrossRef]
- Coveney, S.; Roberts, K. Lightweight UAV digital elevation models and orthoimagery for environmental applications: Data accuracy evaluation and potential for river flood risk modelling. Int. J. Remote Sens. 2017, 38, 3159–3180. [Google Scholar] [CrossRef] [Green Version]
Type | Height (m) | Length (m) | Dam Crest Width (m) | Gradient of Upstream Slope | Gradient of Downstream Slope | Full Water Level (EL.m) | Dead Storage Level (EL.m) |
---|---|---|---|---|---|---|---|
Fill dam (zone type) | 21.5 | 640 | 6 | 1:2.2 | 1:2.0 | 28.5 | 14 |
Trimble GNSS R8 | Parameters | |||
Weight | 1.52 kg | Channel | 440 Channels | |
Stop Positioning Vertical | 3.5 mm + 0.4 ppm RMS | Input | CMR+, CMRx, RTCM2.1–3.1 | |
Stop Positioning Horizontal | 3 mm + 0.1 ppm RMS | Output | 24 NVEA | |
VRS Vertical | 15 mm + 0.5 ppm RMS | Radio Modem | 403 MHz | |
VRS Horizontal | 8 mm + 0.5 ppm RMS | Signal Update Cycle | 1–20 Hz | |
AUTEL EVO2 | Parameters | Camera | ||
Weight | 1110 g | Resolution | 8000 × 6000 | |
Satellite System | GPS/GLONASS/Galileo | Image Sensor | 1/2 CMOS | |
Max Flight Time | 42 min | ISO | 100–3200 (auto) | |
Angular Vibration Range | ±0.005° | F-Stop | F/1.8 | |
Trimble SX10 | Parameters | |||
Angle Accuracy | 1″ | Range Noise | 1.5 mm | |
Accuracy | Prism: 1 mm + 1.5 ppm DR mode: 2 mm + 1.5 | EDM | Laser: 1550 mm Laser spot size at 100 m: 14 mm | |
Scanning | Band Scanning | Point Spacing | 6.25–50 mm | |
Measurement Rate | 26.6 kHz | Camera | 5MP (84×) | |
Range | Prism: 5500 m DR Mode: 800 m | Communication | Wi-Fi, USB, Cable, Long range radio |
Type | Point | X | Y | Z |
---|---|---|---|---|
GCP | 1 | 153,220.641 | 561,642.718 | 32.480 |
2 | 153,306.828 | 561,542.339 | 32.065 | |
3 | 153,363.307 | 561,465.100 | 32.112 | |
4 | 153,402.628 | 561,412.542 | 32.284 | |
5 | 153,443.243 | 561,351.401 | 32.064 | |
6 | 153,516.883 | 561,254.436 | 32.092 | |
7 | 153,255.305 | 561,526.634 | 11.677 | |
8 | 153,296.481 | 561,471.640 | 11.734 | |
9 | 153,366.399 | 561,382.430 | 12.423 | |
10 | 153,479.991 | 561,229.526 | 15.968 | |
CP | 1 | 153,227.739 | 561,649.956 | 32.030 |
2 | 153,270.594 | 561,589.408 | 32.170 | |
3 | 153,427.131 | 561,378.978 | 32.183 | |
4 | 153,555.267 | 561,201.412 | 32.094 | |
5 | 153,215.190 | 561,561.309 | 13.125 | |
6 | 153,230.306 | 561,602.811 | 22.458 | |
7 | 153,452.354 | 561,264.400 | 14.225 |
Type | Point | X | Y | Z |
---|---|---|---|---|
CP error value | 1 | 0.009 | −0.003 | 0.138 |
2 | 0.012 | 0.012 | 0.242 | |
3 | −0.008 | 0.010 | 0.006 | |
4 | −0.022 | 0.020 | −0.044 | |
5 | −0.021 | −0.011 | 0.025 | |
6 | −0.019 | −0.015 | −0.044 | |
7 | −0.020 | −0.012 | −0.056 | |
RMSE | 0.017 | 0.013 | 0.110 |
Type | Point | X | Y | Z |
---|---|---|---|---|
CP error value | 1 | 0.005 | 0.010 | −0.061 |
2 | 0.016 | −0.004 | −0.058 | |
3 | 0.003 | 0.012 | −0.059 | |
4 | 0.020 | −0.011 | −0.057 | |
5 | 0.016 | 0.012 | −0.052 | |
6 | 0.032 | 0.005 | −0.055 | |
7 | 0.012 | 0.021 | −0.054 | |
RMSE | 0.017 | 0.012 | 0.057 |
Type | Point | X | Y | Z |
---|---|---|---|---|
CP error value | 1 | 0.012 | 0.009 | 0.006 |
2 | 0.012 | 0.016 | −0.013 | |
3 | - | - | - | |
4 | - | - | - | |
5 | 0.014 | 0.016 | −0.012 | |
6 | 0.018 | 0.013 | −0.014 | |
7 | 0.022 | 0.016 | −0.011 | |
RMSE | 0.016 | 0.014 | 0.012 |
Type | Point | X | Y | Z |
---|---|---|---|---|
CP error value | 1 | 0.005 | 0.006 | 0.005 |
2 | 0.012 | 0.016 | −0.013 | |
3 | 0.001 | 0.006 | −0.017 | |
4 | 0.008 | −0.004 | −0.007 | |
5 | −0.004 | 0.007 | −0.009 | |
6 | 0.018 | 0.013 | −0.014 | |
7 | 0.022 | 0.016 | −0.011 | |
RMSE | 0.012 | 0.011 | 0.012 |
Type | A | B | C | D | ||||||||
Subsidence Area | ||||||||||||
Inspection Map | ||||||||||||
Length (m) | 67 | 18 | 24.5 | 12.5 | ||||||||
Settlement Volume (m3) | 1.976 | 11.840 | 3.238 | 1.167 | ||||||||
Heaving Volume (m3) | 9.331 | 0.040 | 0.313 | 0.580 | ||||||||
Maximum Height of Settlement (m) | 0.159 | 0.205 | 0.183 | 0.163 | ||||||||
Maximum Height of Heaving (m) | 0.220 | 0.054 | 0.149 | 0.163 | ||||||||
Type | E | F | G | |||||||||
Subsidence Area | ||||||||||||
Inspection Map | ||||||||||||
Length (m) | 20 | 51 | 7.4 | |||||||||
Settlement Volume (m3) | 0.137 | 8.861 | 1.059 | |||||||||
Heaving Volume (m3) | 1.693 | 1.285 | 0.060 | |||||||||
Maximum Height of Settlement (m) | 0.092 | 0.206 | 0.151 | |||||||||
Maximum Height of Heaving (m) | 0.171 | 0.266 | 0.112 |
Type | A | B | C | D |
---|---|---|---|---|
Subsidence Area | ||||
Inspection Map | ||||
Length (m) | 20 | 38.7 | 20 | 41 |
Settlement Volume (m3) | 1.556 | 13.468 | 16.967 | 25.283 |
Heaving Volume (m3) | 5.396 | 11.483 | 5.958 | 0.619 |
Maximum Height of Settlement (m) | 0.363 | 0.297 | 0.386 | 0.418 |
Maximum Height of Heaving (m) | 0.391 | 0.517 | 0.427 | 0.253 |
Type | A | B | C | D |
---|---|---|---|---|
Subsidence Area | ||||
Inspection Map | ||||
Length | 4 m | 14.5 m | 6.8 m | 11 m |
Settlement Volume | 3.179 | 23.234 | 1.828 | 20.751 |
Heaving Volume | 0.028 | 6.484 | 0.024 | 0.289 |
Maximum Height of Settlement | 0.320 m | 0.628 m | 0.340 m | 0.756 m |
Maximum Height of Heaving | 0.130 m | 0.454 m | 0.099 m | 0.208 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Kim, D.; Lee, C.; Kang, J.; Kim, D. Efficiency Study of Combined UAS Photogrammetry and Terrestrial LiDAR in 3D Modeling for Maintenance and Management of Fill Dams. Remote Sens. 2023, 15, 2026. https://doi.org/10.3390/rs15082026
Kang J, Kim D, Lee C, Kang J, Kim D. Efficiency Study of Combined UAS Photogrammetry and Terrestrial LiDAR in 3D Modeling for Maintenance and Management of Fill Dams. Remote Sensing. 2023; 15(8):2026. https://doi.org/10.3390/rs15082026
Chicago/Turabian StyleKang, Joonoh, Daljoo Kim, Chulhee Lee, Jaemo Kang, and Donggyou Kim. 2023. "Efficiency Study of Combined UAS Photogrammetry and Terrestrial LiDAR in 3D Modeling for Maintenance and Management of Fill Dams" Remote Sensing 15, no. 8: 2026. https://doi.org/10.3390/rs15082026
APA StyleKang, J., Kim, D., Lee, C., Kang, J., & Kim, D. (2023). Efficiency Study of Combined UAS Photogrammetry and Terrestrial LiDAR in 3D Modeling for Maintenance and Management of Fill Dams. Remote Sensing, 15(8), 2026. https://doi.org/10.3390/rs15082026