Dynamic Analysis of Regional Wheat Stripe Rust Environmental Suitability in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Occurrence Records and Wheat Distribution Data
2.2.2. Environmental Data
2.3. Variable Selection
2.4. Modeling and Validation
3. Results
3.1. Variable Importance
3.2. Model Validation
3.3. Wheat Stripe Rust Suitable Areas
3.4. Effects of Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, X.M. Epidemiology and Control of Stripe Rust [Puccinia Striiformis f. Sp. Tritici] on Wheat. Can. J. Plant Pathol. 2005, 27, 314–337. [Google Scholar] [CrossRef]
- Chen, W.Q.; Wu, L.R.; Liu, T.G.; Xu, S.C.; Jin, S.L.; Peng, Y.L.; Wang, B.T. Race Dynamics, Diversity, and Virulence Evolution in Puccinia Striiformis f. Sp. Tritici, the Causal Agent of Wheat Stripe Rust in China from 2003 to 2007. Plant Dis. 2009, 93, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Guisan, A.; Tingley, R.; Baumgartner, J.B.; Naujokaitis-Lewis, I.; Sutcliffe, P.R.; Tulloch, A.I.; Regan, T.J.; Brotons, L.; McDonald-Madden, E.; Mantyka-Pringle, C. Predicting Species Distributions for Conservation Decisions. Ecol. Lett. 2013, 16, 1424–1435. [Google Scholar] [CrossRef]
- Lantschner, M.V.; de la Vega, G.; Corley, J.C. Predicting the Distribution of Harmful Species and Their Natural Enemies in Agricultural, Livestock and Forestry Systems: An Overview. Int. J. Pest Manag. 2019, 65, 190–206. [Google Scholar] [CrossRef]
- Zhao, W.J.; Chen, L.; Ding, K.J. Prediction of potential geographic distribution areas of the maize downy mildew in China by using MAXENT. Plant Prot. 2009, 35, 32–38. [Google Scholar]
- Cao, X.R.; Chen, L.; Zhou, Y.L. Potential distribution of Magnaporthe grisea in China and the world, predicted by MaxEnt. Plant Prot. 2011, 37, 80–83. [Google Scholar]
- Zhang, N.N.; Liao, Z.Y.; Wu, S.; Nobis, M.P.; Wang, J.N.; Wu, N. Impact of Climate Change on Wheat Security through an Alternate Host of Stripe Rust. Food Energy Secur. 2022, 11, e356. [Google Scholar] [CrossRef]
- Wellings, C.R. Global Status of Stripe Rust: A Review of Historical and Current Threats. Euphytica 2011, 179, 129–141. [Google Scholar] [CrossRef]
- Chen, W.Q.; Wellings, C.; Chen, X.M.; Kang, Z.S.; Liu, T.G. Wheat Stripe (Yellow) Rust Caused by Puccinia Striiformis f. Sp. Tritici. Mol. Plant Pathol. 2014, 15, 433–446. [Google Scholar] [CrossRef]
- Zeng, S.M.; Luo, Y. Long-Distance Spread and Interregional Epidemics of Wheat Stripe Rust in China. Plant Dis. 2006, 90, 980–988. [Google Scholar] [CrossRef] [Green Version]
- Wan, A.M.; Chen, X.M.; He, Z.H. Wheat Stripe Rust in China. Aust. J. Agric. Res. 2007, 58, 605. [Google Scholar] [CrossRef]
- Hu, X.; Cao, S.Q.; Cornelius, A.; Xu, X.M. Predicting Overwintering of Wheat Stripe Rust in Central and Northwestern China. Plant Dis. 2020, 104, 44–51. [Google Scholar] [CrossRef]
- Bucchignani, E.; Montesarchio, M.; Cattaneo, L.; Manzi, M.P.; Mercogliano, P. Regional Climate Modeling over China with COSMO-CLM: Performance Assessment and Climate Projections. J. Geophys. Res. Atmos. 2014, 119, 12151–12170. [Google Scholar] [CrossRef]
- Wang, C.C.; Li, L.F.; Jiang, B.B.; Zhang, K.Y.; Chu, B.Y.; Luo, Y.; Ma, Z.H. Genetic Diversity and Population Structure of Puccinia Striiformis f. Sp. Tritici Reveal Its Migration from Central to Eastern China. Crop Prot. 2020, 128, 104974. [Google Scholar] [CrossRef]
- Coakley, S.M.; Line, R.F.; McDaniel, L.R. Predicting Stripe Rust Severity on Winter Wheat Using an Improved Method for Analyzing Meteorological and Rust Data. Phytopathology 1988, 78, 543–550. [Google Scholar] [CrossRef]
- El Jarroudi, M.; Kouadio, L.; Bock, C.H.; El Jarroudi, M.; Junk, J.; Pasquali, M.; Maraite, H.; Delfosse, P. A Threshold-Based Weather Model for Predicting Stripe Rust Infection in Winter Wheat. Plant Dis. 2017, 101, 693–703. [Google Scholar] [CrossRef] [Green Version]
- Vidal, T.; Boixel, A.; Maghrebi, E.; Perronne, R.; du Cheyron, P.; Enjalbert, J.; Leconte, M.; de Vallavieille-Pope, C. Success and Failure of Invasive Races of Plant Pathogens: The Case of Puccinia Striiformis f. Sp. Tritici in France. Plant Pathol. 2022, 71, 1525–1536. [Google Scholar] [CrossRef]
- Sharma-Poudyal, D.; Chen, X.M. Models for Predicting Potential Yield Loss of Wheat Caused by Stripe Rust in the U.S. Pacific Northwest. Phytopathology 2011, 101, 544–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, X.; Wang, M.T.; Zhang, G.Z. Prediction model of meteorological grade of wheat stripe rust in winter-reproductive area, Sichuan Basin, China. J. Appl. Ecol. 2017, 28, 3994–4000. [Google Scholar] [CrossRef]
- Naseri, B.; Sharifi, F. Predicting Wheat Stripe Rust Epidemics According to Influential Climatic Variables. J. Plant Prot. Res. 2019, 59, 519–528. [Google Scholar] [CrossRef]
- Sandhu, S.K.; Dhaliwal, L.K.; Pannu, P.P.S. Effect of Weather Parameters on Incidence and Severity of Stripe Rust in Wheat under Natural and Artificial Conditions. J. Agrometeorol. 2017, 19, 272–277. [Google Scholar]
- Wang, H.G.; Yang, X.B.; Ma, Z.H. Long-Distance Spore Transport of Wheat Stripe Rust Pathogen from Sichuan, Yunnan, and Guizhou in Southwestern China. Plant Dis. 2010, 94, 873–880. [Google Scholar] [CrossRef] [Green Version]
- Sharma-Poudyal, D.; Chen, X.M.; Rupp, R.A. Potential Oversummering and Overwintering Regions for the Wheat Stripe Rust Pathogen in the Contiguous United States. Int. J. Biometeorol. 2014, 58, 987–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.D.; Nie, C.W.; Zhang, J.C.; Feng, H.K.; Yang, G.J. A Bayesian Network Model for Yellow Rust Forecasting in Winter Wheat. In Proceedings of the Computer and Computing Technologies in Agriculture; XI; Li, D.L., Zhao, C.J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 545, pp. 65–75. [Google Scholar]
- Wang, X.J.; Ma, Z.H.; Jiang, Y.Y.; Shi, S.D.; Liu, W.; Zeng, J.; Zhao, Z.W.; Wang, H.G. Modeling of the Overwintering Distribution of Puccinia Striiformis f. Sp. Tritici Based on Meteorological Data from 2001 to 2012 in China. Front. Agric. Sci. Eng. 2014, 1, 223. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Bradley, B.; Cord, A.; Rocchini, D.; Tuanmu, M.-N.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N. Will Remote Sensing Shape the next Generation of Species Distribution Models? Remote Sens. Ecol. Conserv. 2015, 1, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Austin, M.P.; Van Niel, K.P. Improving Species Distribution Models for Climate Change Studies: Variable Selection and Scale: Species Distribution Models for Climate Change Studies. J. Biogeogr. 2011, 38, 1–8. [Google Scholar] [CrossRef]
- Leitão, P.J.; Santos, M.J. Improving Models of Species Ecological Niches: A Remote Sensing Overview. Front. Ecol. Evol. 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Tao, S.; Dong, S.; Luo, Y. Climate, Environmental, and Socioeconomic Characteristics of China. In Climate and Environmental Change in China: 1951–2012; Springer Environmental Science and Engineering; Qin, D., Ding, Y., Mu, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1–27. ISBN 978-3-662-48482-1. [Google Scholar]
- Wang, F.H.; He, Z.H.; Sayre, K.; Li, S.D.; Si, J.S.; Feng, B.; Kong, L. Wheat Cropping Systems and Technologies in China. Field Crops Res. 2009, 111, 181–188. [Google Scholar] [CrossRef]
- Brown, J.L. SDMtoolbox: A Python-Based GIS Toolkit for Landscape Genetic, Biogeographic and Species Distribution Model Analyses. Methods Ecol. Evol. 2014, 5, 694–700. [Google Scholar] [CrossRef]
- Luo, Y.C.; Zhang, Z.; Chen, Y.; Li, Z.Y.; Tao, F.L. ChinaCropPhen1km: A High-Resolution Crop Phenological Dataset for Three Staple Crops in China during 2000–2019 Based on LAI Products. In Earth System Science Data Discussions; Beijing Normal University: Beijing, China, 2021; p. 8621165535. [Google Scholar]
- Tao, F.L.; Zhang, S.; Zhang, Z. Spatiotemporal Changes of Wheat Phenology in China under the Effects of Temperature, Day Length and Cultivar Thermal Characteristics. Eur. J. Agron. 2012, 43, 201–212. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 Km Monthly Temperature and Precipitation Dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Mu, X.; Song, X.; Wu, D.; Cheng, A.; Qiu, B. Changes in Extreme Temperature and Precipitation Events in the Loess Plateau (China) during 1960–2013 under Global Warming. Atmos. Res. 2016, 168, 33–48. [Google Scholar] [CrossRef]
- Liang, S.; Cheng, J.; Jia, K.; Jiang, B.; Liu, Q.; Xiao, Z.; Yao, Y.; Yuan, W.; Zhang, X.; Zhao, X. The Global Land Surface Satellite (GLASS) Product Suite. Bull. Am. Meteorol. Soc. 2021, 102, E323–E337. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1981 to Present. Copernic. Clim. Chang. Serv. C3S Clim. Data Store CDS 2019, 10. [Google Scholar]
- Vermote, E.; Wolfe, R. MODIS/Terra Surface Reflectance Daily L2G Global 1km and 500m SIN Grid V061; NASA EOSDIS Land Process. DAAC; LP DAAC: Sioux Falls, South Dakota, 2021; Volume 10. [Google Scholar] [CrossRef]
- Hällfors, M.H.; Liao, J.; Dzurisin, J.; Grundel, R.; Hyvärinen, M.; Towle, K.; Wu, G.C.; Hellmann, J.J. Addressing Potential Local Adaptation in Species Distribution Models: Implications for Conservation under Climate Change. Ecol. Appl. 2016, 26, 1154–1169. [Google Scholar] [CrossRef]
- Gilani, H.; Arif Goheer, M.; Ahmad, H.; Hussain, K. Under Predicted Climate Change: Distribution and Ecological Niche Modelling of Six Native Tree Species in Gilgit-Baltistan, Pakistan. Ecol. Indic. 2020, 111, 106049. [Google Scholar] [CrossRef]
- Norberg, A.; Abrego, N.; Blanchet, F.G.; Adler, F.R.; Anderson, B.J.; Anttila, J.; Araújo, M.B.; Dallas, T.; Dunson, D.; Elith, J. A Comprehensive Evaluation of Predictive Performance of 33 Species Distribution Models at Species and Community Levels. Ecol. Monogr. 2019, 89, e01370. [Google Scholar] [CrossRef]
- Hao, T.X.; Elith, J.; Lahoz-Monfort, J.J.; Guillera-Arroita, G. Testing Whether Ensemble Modelling Is Advantageous for Maximising Predictive Performance of Species Distribution Models. Ecography 2020, 43, 549–558. [Google Scholar] [CrossRef] [Green Version]
- Thuiller, W.; Georges, D.; Engler, R.; Breiner, F.; Georges, M.D.; Thuiller, C.W. Package ‘Biomod2’—Species Distribution Modelling Ensemble Framework; R Core Team: Vienna, Austria, 2016. [Google Scholar]
- McCullagh, P. Generalized Linear Models. Eur. J. Oper. Res. 1984, 16, 285–292. [Google Scholar] [CrossRef]
- Hastie, T.J. Generalized Additive Models. In Statistical Models in S; Routledge: New York, NY, USA, 1992; ISBN 978-0-203-73853-5. [Google Scholar]
- Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Routledge: New York, NY, USA, 2017; ISBN 978-1-315-13947-0. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Buja, A. Flexible Discriminant Analysis by Optimal Scoring. J. Am. Stat. Assoc. 1994, 89, 1255–1270. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Ripley, B.D. Pattern Recognition and Neural Networks; Cambridge University Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Barbet-Massin, M.; Jiguet, F.; Albert, C.H.; Thuiller, W. Selecting Pseudo-Absences for Species Distribution Models: How, Where and How Many? Methods Ecol. Evol. 2012, 3, 327–338. [Google Scholar] [CrossRef]
- Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Thuiller, W.; Lafourcade, B.; Engler, R.; Araújo, M.B. BIOMOD—A Platform for Ensemble Forecasting of Species Distributions. Ecography 2009, 32, 369–373. [Google Scholar] [CrossRef]
- Convertino, M.; Muñoz-Carpena, R.; Chu-Agor, M.L.; Kiker, G.A.; Linkov, I. Untangling Drivers of Species Distributions: Global Sensitivity and Uncertainty Analyses of MaxEnt. Environ. Model. Softw. 2014, 51, 296–309. [Google Scholar] [CrossRef]
- Chen, X. Pathogens Which Threaten Food Security: Puccinia Striiformis, the Wheat Stripe Rust Pathogen. Food Secur. 2020, 12, 239–251. [Google Scholar] [CrossRef]
- Wang, H.; Yang, X.; Ma, Z. Investigation of the Long-Distance Transports of Puccinia Striiformis f. Sp. Tritici in China Using HYSPLIT-4 Model. J. China Agric. Univ. 2010, 15, 55–64. [Google Scholar]
- Wang, Z.; Schaaf, C.B.; Strahler, A.H.; Chopping, M.J.; Román, M.O.; Shuai, Y.; Woodcock, C.E.; Hollinger, D.Y.; Fitzjarrald, D.R. Evaluation of MODIS Albedo Product (MCD43A) over Grassland, Agriculture and Forest Surface Types during Dormant and Snow-Covered Periods. Remote Sens. Environ. 2014, 140, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Yan, F.; Shi, P.J.; Wu, J.J.; Wang, Y.J. Study on Phenology Character of Winter Wheat by Modis-Evi Data in Hebei China. In Proceedings of the IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008; Volume 1, pp. I-327–I-330. [Google Scholar]
- Zeng, Q.D.; Zhao, J.; Wu, J.H.; Zhan, G.M.; Han, D.J.; Kang, Z.S. Wheat Stripe Rust and Integration of Sustainable Control Strategies in China. Front. Agric. Sci. Eng. 2022, 9, 37–51. [Google Scholar] [CrossRef]
- Zeng, Q.-D.; Han, D.-J.; Wang, Q.-L.; Yuan, F.-P.; Wu, J.-H.; Zhang, L.; Wang, X.-J.; Huang, L.-L.; Chen, X.-M.; Kang, Z.-S. Stripe Rust Resistance and Genes in Chinese Wheat Cultivars and Breeding Lines. Euphytica 2014, 196, 271–284. [Google Scholar] [CrossRef] [Green Version]
- Kriticos, D.J.; Morin, L.; Leriche, A.; Anderson, R.C.; Caley, P. Combining a Climatic Niche Model of an Invasive Fungus with Its Host Species Distributions to Identify Risks to Natural Assets: Puccinia Psidii Sensu Lato in Australia. PLoS ONE 2013, 8, e64479. [Google Scholar] [CrossRef] [Green Version]
- da Cunha, H.F.; Ferreira, É.D.; Tessarolo, G.; Nabout, J.C. Host Plant Distributions and Climate Interact to Affect the Predicted Geographic Distribution of a Neotropical Termite. Biotropica 2018, 50, 625–632. [Google Scholar] [CrossRef]
Variable | December | January | February | March | April | May | June | July | August |
---|---|---|---|---|---|---|---|---|---|
DEM | 0.117 | 0.107 | 0.027 | 0.061 | 0.044 | 0.054 | 0.227 | 0.130 | 0.074 |
EVI | 0.018 | 0.025 | 0.011 | 0.018 | 0.335 | 0.179 | 0.161 | 0.109 | 0.144 |
TMP | 0.107 | 0.124 | 0.173 | 0.143 | 0.092 | 0.085 | 0.034 | 0.027 | 0.012 |
TMN | 0.193 | 0.137 | 0.188 | 0.273 | 0.049 | 0.064 | 0.017 | 0.026 | 0.013 |
TMX | 0.047 | 0.123 | 0.177 | 0.044 | 0.034 | 0.075 | 0.019 | 0.079 | 0.022 |
PRE | 0.218 | 0.225 | 0.218 | 0.196 | 0.142 | 0.128 | 0.331 | 0.286 | 0.304 |
PD | 0.065 | 0.088 | 0.038 | 0.057 | 0.046 | 0.015 | 0.013 | 0.018 | 0.011 |
RHU | 0.152 | 0.055 | 0.046 | 0.029 | 0.051 | 0.029 | 0.049 | 0.056 | 0.176 |
SSD | 0.017 | 0.049 | 0.063 | 0.097 | 0.052 | 0.247 | 0.084 | 0.193 | 0.122 |
FVC | 0.028 | 0.032 | 0.020 | 0.030 | 0.076 | 0.057 | 0.021 | 0.030 | 0.034 |
LAI | 0.037 | 0.036 | 0.038 | 0.051 | 0.080 | 0.067 | 0.043 | 0.046 | 0.087 |
Month | Variable |
---|---|
December–March | TMN, PRE, PD, RHU, SSD, EVI, LAI, Elevation |
April–June | TMP, PRE, PD, RHU, SSD, EVI, LAI, Elevation |
July, August | TMX, PRE, PD, RHU, SSD, EVI, LAI, Elevation |
Validation Data | Model | |
---|---|---|
Presence | Absence | |
Presence | a | b |
Absence | c | d |
December | January | February | March | April | May | June | July | August | |
---|---|---|---|---|---|---|---|---|---|
TSS | 0.906 | 0.917 | 0.912 | 0.891 | 0.851 | 0.859 | 0.853 | 0.911 | 0.931 |
AUC | 0.981 | 0.982 | 0.982 | 0.975 | 0.973 | 0.979 | 0.971 | 0.986 | 0.991 |
Model | December | January | February | March | April | May | June | July | August | |
---|---|---|---|---|---|---|---|---|---|---|
TSS | ANN | 0.841 | 0.892 | 0.896 | 0.873 | 0.781 | 0.742 | 0.815 | 0.785 | 0.812 |
CTA | 0.825 | 0.839 | 0.871 | 0.842 | 0.776 | 0.736 | 0.782 | 0.831 | 0.824 | |
FDA | 0.792 | 0.868 | 0.855 | 0.862 | 0.775 | 0.730 | 0.805 | 0.837 | 0.852 | |
GAM | 0.836 | 0.891 | 0.872 | 0.877 | 0.802 | 0.737 | 0.821 | 0.823 | 0.847 | |
GBM | 0.855 | 0.881 | 0.887 | 0.868 | 0.799 | 0.731 | 0.809 | 0.852 | 0.889 | |
GLM | 0.865 | 0.899 | 0.898 | 0.873 | 0.812 | 0.777 | 0.822 | 0.879 | 0.867 | |
MARS | 0.855 | 0.886 | 0.884 | 0.874 | 0.805 | 0.742 | 0.823 | 0.861 | 0.878 | |
MAXENT | 0.863 | 0.889 | 0.877 | 0.879 | 0.804 | 0.753 | 0.837 | 0.890 | 0.892 | |
RF | 0.900 | 0.909 | 0.907 | 0.889 | 0.843 | 0.788 | 0.849 | 0.900 | 0.927 | |
AUC | ANN | 0.943 | 0.964 | 0.972 | 0.956 | 0.938 | 0.915 | 0.940 | 0.919 | 0.936 |
CTA | 0.912 | 0.917 | 0.939 | 0.926 | 0.905 | 0.882 | 0.906 | 0.929 | 0.910 | |
FDA | 0.941 | 0.965 | 0.966 | 0.961 | 0.944 | 0.919 | 0.950 | 0.955 | 0.963 | |
GAM | 0.954 | 0.966 | 0.970 | 0.962 | 0.948 | 0.922 | 0.952 | 0.948 | 0.957 | |
GBM | 0.964 | 0.968 | 0.972 | 0.959 | 0.949 | 0.915 | 0.953 | 0.966 | 0.977 | |
GLM | 0.957 | 0.968 | 0.971 | 0.952 | 0.954 | 0.931 | 0.944 | 0.965 | 0.963 | |
MARS | 0.958 | 0.967 | 0.965 | 0.960 | 0.948 | 0.923 | 0.950 | 0.960 | 0.973 | |
MAXENT | 0.966 | 0.969 | 0.969 | 0.965 | 0.953 | 0.924 | 0.955 | 0.972 | 0.979 | |
RF | 0.979 | 0.977 | 0.977 | 0.965 | 0.959 | 0.936 | 0.969 | 0.978 | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Chen, X.; Dong, Y.; Huang, W.; Ma, H.; Zhang, H.; Xu, Y.; Wang, J. Dynamic Analysis of Regional Wheat Stripe Rust Environmental Suitability in China. Remote Sens. 2023, 15, 2021. https://doi.org/10.3390/rs15082021
Huang L, Chen X, Dong Y, Huang W, Ma H, Zhang H, Xu Y, Wang J. Dynamic Analysis of Regional Wheat Stripe Rust Environmental Suitability in China. Remote Sensing. 2023; 15(8):2021. https://doi.org/10.3390/rs15082021
Chicago/Turabian StyleHuang, Linsheng, Xinyu Chen, Yingying Dong, Wenjiang Huang, Huiqin Ma, Hansu Zhang, Yunlei Xu, and Jing Wang. 2023. "Dynamic Analysis of Regional Wheat Stripe Rust Environmental Suitability in China" Remote Sensing 15, no. 8: 2021. https://doi.org/10.3390/rs15082021
APA StyleHuang, L., Chen, X., Dong, Y., Huang, W., Ma, H., Zhang, H., Xu, Y., & Wang, J. (2023). Dynamic Analysis of Regional Wheat Stripe Rust Environmental Suitability in China. Remote Sensing, 15(8), 2021. https://doi.org/10.3390/rs15082021