Improving Semantic Segmentation of Roof Segments Using Large-Scale Datasets Derived from 3D City Models and High-Resolution Aerial Imagery
Abstract
:1. Introduction
- 1.
- How can semantic 3D city models be used to generate heterogeneous large-scale datasets of roof segment labels for aerial images?
- 2.
- Which label characteristics and potential inaccuracies must be expected when using such an approach?
- 3.
- How does the segmentation performance of a convolutional neural network model differ when trained on small-scale, homogeneous, manually labeled data compared to large-scale, heterogeneous, automatically labeled data?
- A novel approach for generating labeled datasets from 3D city models and aerial images for semantic segmentation of roof segments,
- The exemplary generation of such a large-scale dataset that is more than 50 times as large as the state of the art,
- A model that predicts roof segments and their orientation with a mean IoU of 0.70, which surpasses the state of the art, is capable of generalizing to a significantly larger variety of roofs, and distinguishes more orientation classes,
- A discussion of opportunities and challenges in using 3D city models for automatically generating such datasets.
2. Materials and Methods
2.1. Datasets and Configurations
2.1.1. Manually Labeled Baseline Dataset
2.1.2. Automated Annotation of Aerial Images Using 3D City Models
- The segment’s identifier (ID),
- The ID of the associated building,
- The projected, two-dimensional segment polygon geometry,
- The segment’s azimuth and slope as computed from its normal vector using a custom function in Procedural Language/PostgreSQL (PL/pgSQL),
- The roof generation method (see Section 2.1.4).
2.1.3. Dataset Configurations and Study Areas
2.1.4. Pre-Processing of the Large-Scale Dataset
2.1.5. Dataset Split Considering Spatial Overlap
2.2. Dataset Evaluation and Semantic Segmentation Training
2.2.1. Neural Network Architecture and Hyperparameters
2.2.2. Data Augmentation
2.2.3. Neural Network Performance Evaluation
3. Results
3.1. Automatically Generated Labels and Their Quality
3.2. Semantic Segmentation Performance
3.2.1. Mean Intersection over Union
3.2.2. Confusion Matrices
3.3. Model Prediction Examples
4. Discussion
4.1. Generation of Datasets from Semantic 3D City Model Data
4.1.1. Characteristics of the Derived Labels
4.1.2. Implications of the Approach to Splitting the Datasets
4.1.3. Scalability of the Data Generation Approach
4.2. Semantic Segmentation Performance
4.2.1. Overall Performance Evaluation and Its Limitations
4.2.2. Possibilities to Improve Segmentation Performance
4.2.3. Comparison to the State of the Art
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3DCityDB | 3D City Database [27,28] |
ALKIS | Amtliches Liegenschaftskatasterinformationssystem (Authoritative Real Estate Cadastre Information System) |
BMDV | Bundesministerium für Digitales und Verkehr (German Federal Ministry for Digital and Transport) |
B-rep | Boundary representation |
CityGML | City Geography Markup Language |
CNN | Convolutional neural network |
DL | Deep learning |
DOP20 | Digital orthophoto at 0.2 m px resolution |
FCN | Fully convolutional network |
FN | False negative prediction |
FP | False positive prediction |
GAN | Generative adversarial network |
HED | Holistically nested edge detection |
ID | Identifier |
IoU | Intersection over union |
LDBV | Landesamt für Digitalisierung, Breitband und Vermessung (Bavarian Agency for Digitisation, High-Speed Internet and Surveying) |
LOD | Level of detail |
N, E, S, W | The cardinal directions North, East, South, West, and their combinations (intercardinal and secondary intercardinal directions, e.g., NE: northeast, WSW: west-southwest) |
OSM | OpenStreetMap |
PixIoU | Generalized IoU for pixelwise prediction [43] |
PL/pgSQL | Procedural Language/PostgreSQL |
RegioStaR | Regional Statistical Spatial Typology for Mobility and Transport Research [30] |
ResNet | Residual neural network [32] |
RID | Roof Information Dataset [19] |
SQL | Structured Query Language |
TP | True positive prediction |
References
- Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Neupane, B.; Horanont, T.; Aryal, J. Deep Learning-Based Semantic Segmentation of Urban Features in Satellite Images: A Review and Meta-Analysis. Remote Sens. 2021, 13, 808. [Google Scholar] [CrossRef]
- Yuan, X.; Shi, J.; Gu, L. A review of deep learning methods for semantic segmentation of remote sensing imagery. Expert Syst. Appl. 2021, 169, 114417. [Google Scholar] [CrossRef]
- Diakogiannis, F.I.; Waldner, F.; Caccetta, P.; Wu, C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020, 162, 94–114. [Google Scholar] [CrossRef] [Green Version]
- Tran, A.; Zonoozi, A.; Varadarajan, J.; Kruppa, H. PP-LinkNet: Improving Semantic Segmentation of High Resolution Satellite Imagery with Multi-stage Training. In Proceedings of the 2nd Workshop on Structuring and Understanding of Multimedia heritAge Contents, Seattle, WA, USA, 12–16 October 2020; Gouet-Brunet, V., Khokhlova, M., Kosti, R., Chen, L., Yin, X.C., Eds.; ACM: New York, NY, USA; pp. 57–64. [Google Scholar] [CrossRef]
- Kang, J.; Wang, Z.; Zhu, R.; Sun, X.; Fernandez-Beltran, R.; Plaza, A. PiCoCo: Pixelwise Contrast and Consistency Learning for Semisupervised Building Footprint Segmentation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10548–10559. [Google Scholar] [CrossRef]
- Hua, Y.; Marcos, D.; Mou, L.; Zhu, X.X.; Tuia, D. Semantic Segmentation of Remote Sensing Images With Sparse Annotations. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Kaiser, P.; Wegner, J.D.; Lucchi, A.; Jaggi, M.; Hofmann, T.; Schindler, K. Learning Aerial Image Segmentation From Online Maps. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6054–6068. [Google Scholar] [CrossRef]
- Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Convolutional Neural Networks for Large-Scale Remote-Sensing Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 645–657. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J. Learning Building Extraction in Aerial Scenes with Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 2793–2798. [Google Scholar] [CrossRef]
- Li, W.; He, C.; Fang, J.; Zheng, J.; Fu, H.; Yu, L. Semantic Segmentation-Based Building Footprint Extraction Using Very High-Resolution Satellite Images and Multi-Source GIS Data. Remote Sens. 2019, 11, 403. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Guo, W.; Li, M.; Yu, W. GIS-Supervised Building Extraction With Label Noise-Adaptive Fully Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2135–2139. [Google Scholar] [CrossRef]
- Touzani, S.; Granderson, J. Open Data and Deep Semantic Segmentation for Automated Extraction of Building Footprints. Remote Sens. 2021, 13, 2578. [Google Scholar] [CrossRef]
- Bergamasco, L.; Asinari, P. Scalable methodology for the photovoltaic solar energy potential assessment based on available roof surface area: Application to Piedmont Region (Italy). Sol. Energy 2011, 85, 1041–1055. [Google Scholar] [CrossRef] [Green Version]
- Mainzer, K.; Killinger, S.; McKenna, R.; Fichtner, W. Assessment of rooftop photovoltaic potentials at the urban level using publicly available geodata and image recognition techniques. Sol. Energy 2017, 155, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Iyengar, S.; Feng, M.; Shenoy, P.; Maji, S. DeepRoof: A Data-Driven Approach For Solar Potential Estimation Using Rooftop Imagery. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2105–2113. [Google Scholar] [CrossRef]
- Krapf, S.; Kemmerzell, N.; Khawaja Haseeb Uddin, S.; Hack Vázquez, M.; Netzler, F.; Lienkamp, M. Towards Scalable Economic Photovoltaic Potential Analysis Using Aerial Images and Deep Learning. Energies 2021, 14, 3800. [Google Scholar] [CrossRef]
- Li, Q.; Krapf, S.; Shi, Y.; Zhu, X.X. SolarNet: A convolutional neural network-based framework for rooftop solar potential estimation from aerial imagery. Int. J. Appl. Earth Obs. Geoinf. 2023, 116, 103098. [Google Scholar] [CrossRef]
- Krapf, S.; Bogenrieder, L.; Netzler, F.; Balke, G.; Lienkamp, M. RID—Roof Information Dataset for Computer Vision-Based Photovoltaic Potential Assessment. Remote Sens. 2022, 14, 2299. [Google Scholar] [CrossRef]
- Zhang, Y.; Ling, H.; Gao, J.; Yin, K.; Lafleche, J.F.; Barriuso, A.; Torralba, A.; Fidler, S. DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 10140–10150. [Google Scholar] [CrossRef]
- Kolbe, T.H. Representing and Exchanging 3D City Models with CityGML. In 3D Geo-Information Sciences; Lee, J., Zlatanova, S., Eds.; Lecture Notes in Geoinformation and Cartography; Springer: Berlin, Germany; London, UK, 2009; pp. 15–31. [Google Scholar] [CrossRef]
- Open Geospatial Consortium. OGC City Geography Markup Language (CityGML) Encoding Standard Version 2.0.0; Open Geospatial Consortium: Arlington, VA, USA, 2012. [Google Scholar]
- Wysocki, O.; Schwab, B.; Willenborg, B. OloOcki/awesome-citygml: Release. Zenodo 2022. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; LNCS Sublibrary: SL6—Image Processing, Computer Vision, Pattern Recognition, and Graphics; Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef]
- Landesamt für Digitalisierung, Breitband und Vermessung. Available online: https://www.ldbv.bayern.de/ (accessed on 30 January 2023).
- Kada, M.; Mckinley, L. 3D building reconstruction from LiDAR based on a cell decomposition approach. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2009, 38, W4. [Google Scholar]
- Yao, Z.; Nagel, C.; Kunde, F.; Hudra, G.; Willkomm, P.; Donaubauer, A.; Adolphi, T.; Kolbe, T.H. 3DCityDB—A 3D geodatabase solution for the management, analysis, and visualization of semantic 3D city models based on CityGML. Open Geospat. Data Softw. Stand. 2018, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- 3D City Database: The Open Source CityGML Database. Available online: https://github.com/3dcitydb (accessed on 30 January 2023).
- Faltermeier, F.L. tum-gis/citygml-roof-segment-labels: Generate datasets of roof segment labels for aerial imagery derived from CityGML semantic 3D city models for semantic segmentation. Zenodo 2023. [Google Scholar] [CrossRef]
- Bundesministerium für Digitales und Verkehr (BMDV). Regionalstatistische Raumtypologie (RegioStaR) des BMVI für die Mobilitäts- und Verkehrsforschung: Arbeitspapier Version V1.1 (06.06.2018); Bundesministerium für Digitales und Verkehr (BMDV): Berlin, Germany, 2018. [Google Scholar]
- Bayerische Vermessungsverwaltung. Kundeninformation LoD2 Gebäudemodelle: Stand 3/2018; Bayerische Vermessungsverwaltung: Munich, Germany, 2018. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Yakubovskiy, P. Segmentation Models. Available online: https://github.com/qubvel/segmentation_models (accessed on 14 November 2022).
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Via del Mar, Chile, 27–29 October 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Sugino, T.; Kawase, T.; Onogi, S.; Kin, T.; Saito, N.; Nakajima, Y. Loss Weightings for Improving Imbalanced Brain Structure Segmentation Using Fully Convolutional Networks. Healthcare 2021, 9, 938. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Sokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437. [Google Scholar] [CrossRef]
- Swiss Confederation Federal Office of Topography Swisstopo. swissBUILDINGS3D 2.0: 3D Building Models of Switzerland. Available online: https://www.swisstopo.admin.ch/en/geodata/landscape/buildings3d2.html (accessed on 10 February 2023).
- Kofler, F.; Ezhov, I.; Isensee, F.; Balsiger, F.; Berger, C.; Koerner, M.; Paetzold, J.; Li, H.; Shit, S.; McKinley, R.; et al. Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient. arXiv 2021, arXiv:2103.06205. [Google Scholar] [CrossRef]
- Reinke, A.; Tizabi, M.D.; Sudre, C.H.; Eisenmann, M.; Rädsch, T.; Baumgartner, M.; Acion, L.; Antonelli, M.; Arbel, T.; Bakas, S.; et al. Common Limitations of Image Processing Metrics: A Picture Story. arXiv 2021, arXiv:2104.05642. [Google Scholar] [CrossRef]
- Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 658–666. [Google Scholar] [CrossRef] [Green Version]
- van Beers, F.; Lindström, A.; Okafor, E.; Wiering, M. Deep Neural Networks with Intersection over Union Loss for Binary Image Segmentation. In Proceedings of the ICPRAM 2019, Prague, Czech Republic, 19–21 February 2019; de Marsico, M., Di Sanniti Baja, G., Fred, A., Eds.; SCITEPRESS—Science and Technology Publications Lda: Sétubal, Portugal, 2019; pp. 438–445. [Google Scholar] [CrossRef]
- Yu, J.; Xu, J.; Chen, Y.; Li, W.; Wang, Q.; Yoo, B.; Han, J.J. Learning Generalized Intersection Over Union for Dense Pixelwise Prediction. In Proceedings of the 38th International Conference on Machine Learning, Virtual Event, 18–24 July 2021; Meila, M., Zhang, T., Eds.; Volume 139, pp. 12198–12207. [Google Scholar]
- Bischke, B.; Helber, P.; Folz, J.; Borth, D.; Dengel, A. Multi-Task Learning for Segmentation of Building Footprints with Deep Neural Networks. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 1480–1484. [Google Scholar] [CrossRef] [Green Version]
- Abdollahi, A.; Pradhan, B.; Gite, S.; Alamri, A. Building Footprint Extraction from High Resolution Aerial Images Using Generative Adversarial Network (GAN) Architecture. IEEE Access 2020, 8, 209517–209527. [Google Scholar] [CrossRef]
- Collier, E.; Mukhopadhyay, S.; Duffy, K.; Ganguly, S.; Madanguit, G.; Kalia, S.; Shreekant, G.; Nemani, R.; Michaelis, A.; Li, S.; et al. Semantic Segmentation of High Resolution Satellite Imagery using Generative Adversarial Networks with Progressive Growing. Remote Sens. Lett. 2021, 12, 439–448. [Google Scholar] [CrossRef]
- He, C.; Li, S.; Xiong, D.; Fang, P.; Liao, M. Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance. Remote Sens. 2020, 12, 1501. [Google Scholar] [CrossRef]
- Jung, H.; Choi, H.S.; Kang, M. Boundary Enhancement Semantic Segmentation for Building Extraction From Remote Sensed Image. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Li, Z.; Xin, Q.; Sun, Y.; Cao, M. A Deep Learning-Based Framework for Automated Extraction of Building Footprint Polygons from Very High-Resolution Aerial Imagery. Remote Sens. 2021, 13, 3630. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, Z.; Yan, J.; Chen, G.; Wang, X. E-D-Net: Automatic Building Extraction From High-Resolution Aerial Images With Boundary Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4595–4606. [Google Scholar] [CrossRef]
- Wei, S.; Ji, S.; Lu, M. Toward Automatic Building Footprint Delineation From Aerial Images Using CNN and Regularization. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2178–2189. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Z.; Huang, C.; Dehghan, M.; Zaiane, O.R.; Jagersand, M. U2-Net: Going deeper with nested U-structure for salient object detection. Pattern Recognit. 2020, 106, 107404. [Google Scholar] [CrossRef]
- Wei, X.; Li, X.; Liu, W.; Zhang, L.; Cheng, D.; Ji, H.; Zhang, W.; Yuan, K. Building Outline Extraction Directly Using the U2-Net Semantic Segmentation Model from High-Resolution Aerial Images and a Comparison Study. Remote Sens. 2021, 13, 3187. [Google Scholar] [CrossRef]
- Strudel, R.; Garcia, R.; Laptev, I.; Schmid, C. Segmenter: Transformer for Semantic Segmentation. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; Mortensen, E., Ed.; IEEE: Piscataway, NJ, USA, 2021; pp. 7242–7252. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–14 December 2021; Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P.S., Wortman Vaughan, J., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2021; Volume 34, pp. 12077–12090. [Google Scholar]
- Zheng, S.; Lu, J.; Zhao, H.; Zhu, X.; Luo, Z.; Wang, Y.; Fu, Y.; Feng, J.; Xiang, T.; Torr, P.H.; et al. Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6877–6886. [Google Scholar] [CrossRef]
- Bayerische Vermessungsverwaltung. Kostenfreie Geodaten (OpenData). Available online: https://geodaten.bayern.de/opengeodata/ (accessed on 30 January 2023).
ID | Class Name | Abbr. | Azimuth Range [°] | |
---|---|---|---|---|
Min | Max | |||
0 | Background | BG | - | - |
1 | North | N | −11.25 | 11.25 |
2 | North-northeast | NNE | 11.25 | 33.75 |
3 | Northeast | NE | 33.75 | 56.25 |
4 | East-northeast | ENE | 56.25 | 78.75 |
5 | East | E | 78.75 | 101.25 |
6 | East-southeast | ESE | 101.25 | 123.75 |
7 | Southeast | SE | 123.75 | 146.25 |
8 | South-southeast | SSE | 146.25 | 168.75 |
9 | South | S | 168.75 | 191.25 |
10 | South-southwest | SSW | 191.25 | 213.75 |
11 | Southwest | SW | 213.75 | 236.25 |
12 | West-southwest | WSW | 236.25 | 258.75 |
13 | West | W | 258.75 | 281.25 |
14 | West-northwest | WNW | 281.25 | 303.75 |
15 | Northwest | NW | 303.75 | 326.25 |
16 | North-northwest | NNW | 326.25 | 348.75 |
17 | Flat | Flat | - | - |
Number of Samples | Number of Positions | |||||
---|---|---|---|---|---|---|
Configuration | Total | Training | Validation | Test | Validation | Test |
small-manu | 1878 | 1364 | 180 | 180 | 3 | 3 |
small-auto | 1878 | 1364 | 180 | 180 | 3 | 3 |
small-both | 3756 | 2728 | 360 | 360 | 3 | 3 |
large-auto | 94,490 | 84,312 | 4500 | 4500 | 11 | 11 |
Roof Generation Method | Object Count | ||
---|---|---|---|
Value | Description | Buildings | Segments |
1000 | Identification algorithm (automatic) | 61,581 | 98,776 |
2000 | Identification algorithm (semi-automatic, edited) | 54,560 | 196,308 |
3100 | Unidentified: Flat roof with minimum height | 1398 | 1398 |
3210 | Unidentified: Flat roof with derived height (automatic) | 3425 | 3425 |
3220 | Unidentified: Flat roof with derived height (edited) | 1855 | 1855 |
4000 | Manual input of roof geometry | 0 | 0 |
9999 | Unknown | 231 | 542 |
Sum | 123,050 | 302,304 |
Large-Scale | Number of Samples | |||||
---|---|---|---|---|---|---|
Dataset Region | Total (Relative) | Test | Validation | Per Position | Positions Per Set | |
Rural Bavaria | 25,128 | (0.27) | 1200 | 1200 | 400 | 3 |
Munich | 41,945 | (0.44) | 2000 | 2000 | 500 | 4 |
Erding, Freising | 27,417 | (0.29) | 1300 | 1300 | 325 | 4 |
All | 94,490 | (1.00) | 4500 | 4500 |
Dataset | ||||
---|---|---|---|---|
Model | small-manu | small-auto | small-both | large-auto |
small-manu | 0.603 | 0.425 | 0.513 | 0.366 |
small-auto | 0.369 | 0.584 | 0.470 | 0.411 |
small-both | 0.602 | 0.616 | 0.609 | 0.467 |
large-auto | 0.504 | 0.700 | 0.597 | 0.635 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faltermeier, F.L.; Krapf, S.; Willenborg, B.; Kolbe, T.H. Improving Semantic Segmentation of Roof Segments Using Large-Scale Datasets Derived from 3D City Models and High-Resolution Aerial Imagery. Remote Sens. 2023, 15, 1931. https://doi.org/10.3390/rs15071931
Faltermeier FL, Krapf S, Willenborg B, Kolbe TH. Improving Semantic Segmentation of Roof Segments Using Large-Scale Datasets Derived from 3D City Models and High-Resolution Aerial Imagery. Remote Sensing. 2023; 15(7):1931. https://doi.org/10.3390/rs15071931
Chicago/Turabian StyleFaltermeier, Florian L., Sebastian Krapf, Bruno Willenborg, and Thomas H. Kolbe. 2023. "Improving Semantic Segmentation of Roof Segments Using Large-Scale Datasets Derived from 3D City Models and High-Resolution Aerial Imagery" Remote Sensing 15, no. 7: 1931. https://doi.org/10.3390/rs15071931
APA StyleFaltermeier, F. L., Krapf, S., Willenborg, B., & Kolbe, T. H. (2023). Improving Semantic Segmentation of Roof Segments Using Large-Scale Datasets Derived from 3D City Models and High-Resolution Aerial Imagery. Remote Sensing, 15(7), 1931. https://doi.org/10.3390/rs15071931