Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment
Abstract
:1. Introduction
2. Theoretical Analysis
3. Image Data Analysis
3.1. Data and Method
3.2. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, W.; Zhang, Z.; Yang, Z.; Pang, S.; Chen, J.; Cheng, Q. Spectral Probability Distribution of Closed Connected Water and Remote Sensing Statistical Inference for Yellow Substance. Photogramm. Eng. Remote Sens. 2021, 87, 807–819. [Google Scholar] [CrossRef]
- Zhu, W. Remote sensing statistical inference: Basic theory and forward simulation of water–air statistical radiative transfer. Earth Sci. Inform. 2021, 14, 2145–2159. [Google Scholar] [CrossRef]
- Goodman, J.W. Statistical Optics, 2nd ed.; John Wiley & Sons Press: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kandidov, V. Monte Carlo method in nonlinear statistical optics. Uspekhi Fiz. Nauk. 1996, 166, 1309–1338. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.; Yang, Z.; He, S.; Cheng, Q. Skewness-Based Classification and Environmental Indication of Spectral Probability Distribution of Global Closed Connected Waters. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Kondratyev, K.Y.; Kozoderov, V.V.; Smokty, O.I. Remote Sensing of the Earth from Space: Atmospheric Correction; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Chavez, P.S. Image-Based Atmospheric Corrections Revisited and Improved, Photogrammetric Engineering and Remote Sensing; Springer: Berlin/Heidelberg, Germany, 1996; Volume 62, pp. 1025–1036. [Google Scholar]
- Emberton, S.; Chittka, L.; Cavallaro, A.; Wang, M. Sensor Capability and Atmospheric Correction in Ocean Colour Remote Sensing. Remote Sens. 2015, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Song, C.H.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Lin, C.; Wu, C.-C.; Tsogt, K.; Ouyang, Y.-C.; Chang, C.-I. Effects of atmospheric correction and pansharpening on LULC classification accuracy using WorldView-2 imagery. Inf. Process. Agric. 2015, 2, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Vanonckelen, S.; Lhermitte, S.; Van Rompaey, A. The effect of atmospheric and topographic correction on pixel-based image composites: Improved forest cover detection in mountain environments. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 320–328. [Google Scholar] [CrossRef]
- Campbell, G.; Phinn, S.R.; Dekker, A.G.; Brando, V.E. Remote sensing of water quality in an Australian tropical freshwater impoundment using matrix inversion and MERIS images. Remote Sens. Environ. 2011, 115, 2402–2414. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, S.C.; Gould, R.W.; Richman, J.; Kearney, C.; Lawson, A. Impact of Aerosol Model Selection on Water-Leaving Radiance Retrievals from Satellite Ocean Color Imagery. Remote Sens. 2012, 4, 3638–3665. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Li, Y.M.; Lyu, H.; Wang, S.; Du, C.G.; Huang, C.C. An improved land target-based atmospheric correction method for Lake Taihu. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 793–803. [Google Scholar] [CrossRef]
- Zhu, W.; Tian, Y.Q.; Yu, Q.; Becker, B.L. Using Hyperion imagery to monitor the spatial and temporal distribution of colored dissolved organic matter in estuarine and coastal regions. Remote Sens. Environ. 2013, 134, 342–354. [Google Scholar] [CrossRef]
- Dodge, Y. The Oxford Dictionary of Statistical Terms, 6th ed.; Oxford University Press: Oxford, UK, 2006. [Google Scholar]
- Liang, S.L. Quantitative Remote Sensing of Land Surfaces; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Mobley, C.D. Light and Water: Radiative Transfer in Natural Water; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Vanhellemont, Q.; Ruddick, K. Atmospheric correction of metre-scale optical satellite data for inland and coastal water applications. Remote Sens. Environ. 2018, 216, 586–597. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sens. Environ. 2019, 225, 175–192. [Google Scholar] [CrossRef]
- Vanhellemont, Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry. Opt. Express 2020, 28, 29948–29965. [Google Scholar] [CrossRef] [PubMed]
- Vanhellemont, Q.; Ruddick, K. Turbid wakes associated with offshore wind turbines observed with Landsat 8. Remote Sens. Environ. 2014, 145, 105–115. [Google Scholar] [CrossRef] [Green Version]
Stat. Para. | B1 | B2 | B3 | B4 | B5 | Average |
---|---|---|---|---|---|---|
Mean | 0.88 | 0.93 | 0.98 | 0.98 | 0.97 | 0.95 |
Median | 0.88 | 0.93 | 0.98 | 0.99 | 0.97 | 0.95 |
Std | 0.95 | 0.95 | 0.97 | 0.98 | 0.98 | 0.97 |
Min | 0.75 | 0.79 | 0.89 | 0.89 | 0.98 | 0.87 |
Max | 0.81 | 0.85 | 0.89 | 0.92 | 0.89 | 0.87 |
Average | 0.86 | 0.89 | 0.94 | 0.95 | 0.96 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.; Xia, W. Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment. Remote Sens. 2023, 15, 1907. https://doi.org/10.3390/rs15071907
Zhu W, Xia W. Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment. Remote Sensing. 2023; 15(7):1907. https://doi.org/10.3390/rs15071907
Chicago/Turabian StyleZhu, Weining, and Wei Xia. 2023. "Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment" Remote Sensing 15, no. 7: 1907. https://doi.org/10.3390/rs15071907
APA StyleZhu, W., & Xia, W. (2023). Effects of Atmospheric Correction on Remote Sensing Statistical Inference in an Aquatic Environment. Remote Sensing, 15(7), 1907. https://doi.org/10.3390/rs15071907