Proof and Application of Discriminating Ocean Oil Spills and Seawater Based on Polarization Ratio Using Quad-Polarization Synthetic Aperture Radar
Abstract
:1. Introduction
2. Data and Methodology
2.1. SAR Data and Preprocessing
2.2. ERA5 Reanalysis Data and SAR Wind Inversion Method
2.3. Oil Spill Detection Method Based on Relative Polarization Ratio Characteristics
2.3.1. Polarization Ratio Methods
2.3.2. Euclidean Distance-Based Threshold for
3. Results
3.1. SAR Wind Field Inversion Results and Analysis
3.2. Analysis of Oil Spill Detection Results
4. Discussion
4.1. Advantages Analysis of
4.2. Accuracy and Uncertainty
5. Conclusions
- is a physical characteristic based on the difference in dielectric constants and scattering mechanisms for oil spill and clean seawater areas.
- can numerically increase the contrast between oil spill areas and clean seawater, thereby narrowing the difference between the “look-alike” low wind areas and the surrounding seawater. In addition, the details of the target sea surface are well preserved.
- The of pixels in low wind areas and oil spills is higher than that of ordinary seawater, while the of low wind areas is smaller than that of oil spills. Therefore, based on , oil spills and seawater can be effectively discriminated, and we can largely avoid misidentification of oil spills and low wind areas.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dong, Y.; Liu, Y.; Hu, C.; MacDonald, I.R.; Lu, Y. Chronic oiling in global oceans. Science 2022, 376, 1300–1304. [Google Scholar] [CrossRef]
- Chen, H.; Xie, T.; Xu, H.; Meng, L.; Chen, W. Comparative analysis of oil spill recognition based on TM remote sensing image. J. Wuhan Univ. Technol. (IAME) 2019, 3, 305–311. [Google Scholar]
- Brekke, C.; Solberg, A.H. Oil spill detection by satellite remote sensing. Remote Sens. Environ. 2005, 95, 1–13. [Google Scholar] [CrossRef]
- Li, H.; Perrie, W.; Wu, J. Retrieval of oil–water mixture ratio at ocean surface using compact polarimetry synthetic aperture radar. Remote Sens. 2019, 11, 816. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Chen, J.; Zhang, Y. Progress in research on marine oil spills detection using synthetic aperture radar. J. Electron. Inf. Technol. 2019, 41, 751–762. [Google Scholar]
- Dabboor, M.; Singha, S.; Topouzelis, K.; Flett, D. Oil Spill Detection Using Simulated Radarsat Constellation Mission Compact Polarimetric SAR Data. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 4582–4585. [Google Scholar]
- Latini, D.; Del Frate, F.; Jones, C.E. Multi-frequency and polarimetric quantitative analysis of the gulf of mexico oil spill event comparing different SAR systems. Remote Sens. Environ. 2016, 183, 26–42. [Google Scholar] [CrossRef]
- Gade, M.; Alpers, W.; Hühnerfuss, H.; Masuko, H.; Kobayashi, T. Imaging of biogenic and anthropogenic ocean surface films by the multifrequency/multipolarization SIR-C/X-SAR. J. Geophys. Res. Oceans 1998, 103, 18851–18866. [Google Scholar] [CrossRef]
- Zhang, B.; Perrie, W.; Li, X.; Pichel, W.G. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image. Geophys. Res. Lett. 2011, 38, L10602. [Google Scholar] [CrossRef] [Green Version]
- Minchew, B.; Jones, C.E.; Holt, B. Polarimetric analysis of backscatter from the deepwater horizon oil spill using L-Band synthetic aperture radar. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3812–3830. [Google Scholar] [CrossRef]
- Skrunes, S.; Brekke, C.; Eltoft, T. Characterization of Marine Surface Slicks by Radarsat-2 Multipolarization Features. IEEE Trans. Geosci. Remote Sens. 2013, 52, 5302–5319. [Google Scholar] [CrossRef] [Green Version]
- Marghany, M. Utilization of a Genetic Algorithm for the Automatic Detection of Oil Spill from RADARSAT-2 SAR Satellite Data. Mar. Pollut. Bull. 2014, 89, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Tong, S.; Liu, X.; Chen, Q.; Zhang, Z.; Xie, G. Multi-Feature Based Ocean Oil Spill Detection for Polarimetric SAR Data Using Random Forest and the Self-Similarity Parameter. Remote Sens. 2019, 11, 451. [Google Scholar] [CrossRef] [Green Version]
- Velotto, D.; Migliaccio, M.; Nunziata, F.; Lehner, S. Dual-Polarized TerraSAR-X Data for Oil-Spill Observation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4751–4762. [Google Scholar] [CrossRef]
- Ivonin, D.V.; Skrunes, S.; Brekke, C.; Ivanov, A.Y. Interpreting Sea Surface Slicks on the Basis of the Normalized Radar Cross-Section Model Using RADARSAT-2 Copolarization Dual-Channel SAR Images. Geophys. Res. Lett. 2016, 43, 2748–2757. [Google Scholar] [CrossRef] [Green Version]
- Angelliaume, S.; Boisot, O.; Guérin, C.-A. Dual-Polarized L-Band SAR Imagery for Temporal Monitoring of Marine Oil Slick Concentration. Remote Sens. 2018, 10, 1012. [Google Scholar] [CrossRef] [Green Version]
- Tian, W.; Shao, Y.; Yuan, J.; Wang, S.; Liu, Y. An Experiment for Oil Spill Recognition Using RADARSAT-2 Image. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 2761–2764. [Google Scholar]
- Chen, G.; Li, Y.; Sun, G.; Zhang, Y. Application of Deep Networks to Oil Spill Detection Using Polarimetric Synthetic Aperture Radar Images. Appl. Sci. 2017, 7, 968. [Google Scholar] [CrossRef]
- Song, D.; Ding, Y.; Li, X.; Zhang, B.; Xu, M. Ocean Oil Spill Classification with RADARSAT-2 SAR Based on an Optimized Wavelet Neural Network. Remote Sens. 2017, 9, 799. [Google Scholar] [CrossRef] [Green Version]
- Diana, L.; Xu, J.; Fanucci, L. Oil Spill Identification from SAR Images for Low Power Embedded Systems Using CNN. Remote Sens. 2021, 13, 3606. [Google Scholar] [CrossRef]
- Xie, T.; Perrie, W.; Fang, H.; Zhao, L.; Yu, W.-J.; He, Y.-J. Effective Dielectric Constant Model of Electromagnetic Backscattering from Stratified Air–Sea Surface Film–Sea Water Medium. Chin. Phys. B 2017, 26, 054102. [Google Scholar] [CrossRef]
- Chen, H.; Xie, T.; Fang, H.; Meng, L.; Zhao, L.; Ai, R. Sea surface oil spill identification method based on SAR polarization ratio and texture feature. Haiyang Xuebao 2019, 9, 181–190. [Google Scholar]
- Xie, T.; Perrie, W.; Wei, C.; Zhao, L. Discrimination of Open Water from Sea Ice in the Labrador Sea Using Quad-Polarized Synthetic Aperture Radar. Remote Sens. Environ. 2020, 247, 111948. [Google Scholar] [CrossRef]
- Touzi, R.; Vachon, P.W.; Wolfe, J. Requirement on Antenna Cross-Polarization Isolation for the Operational Use of C-Band SAR Constellations in Maritime Surveillance. IEEE Geosci. Remote Sens. Lett. 2010, 7, 861–865. [Google Scholar] [CrossRef]
- Quigley, C.; Brekke, C.; Eltoft, T. Retrieval of Marine Surface Slick Dielectric Properties from Radarsat-2 Data via a Polarimetric Two-Scale Model. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5162–5178. [Google Scholar] [CrossRef]
- RADARSAT-2 Product Format Definition MacDonald; Dettwiler and Associates Ltd.: Richmond, BC, Canada, 2008.
- Yommy, A.S.; Liu, R.; Wu, S. SAR Image Despeckling Using Refined Lee Filter. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; Volume 2, pp. 260–265. [Google Scholar]
- Lee, J.-S.; Jurkevich, L.; Dewaele, P.; Wambacq, P.; Oosterlinck, A. Speckle Filtering of Synthetic Aperture Radar Images: A Review. Remote Sens. Rev. 1994, 8, 313–340. [Google Scholar] [CrossRef]
- Benes, R.; Riha, K. Medical Image Denoising by Improved Kuan Filter. Adv. Electr. Electron. Eng. 2012, 10, 43–49. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 Reanalysis Is in Production. ECMWF Newsl. 2016, 147, 5–6. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Horányi, A.; Sabater, J.M.; Nicolas, J.; Radu, R.; Schepers, D.; Simmons, A.; Soci, C. Global Reanalysis: Goodbye ERA-Interim, Hello ERA5. ECMWF Newsl. 2019, 159, 17–24. [Google Scholar]
- Meng, X.; Guo, J.; Han, Y. Preliminarily assessment of ERA5 reanalysis data. J. Mar. Meteor. 2018, 38, 91–99. [Google Scholar]
- Fang, H.; Xie, T.; Zhou, Y.; Yang, J.; Zhao, L.; He, Y. Evaluation of SAR wind speed retrieved based on C-2PO model and CMOD5.N geophysical model functions. Haiyang Xuebao 2018, 40, 103–112. [Google Scholar]
- Ren, L.; Chen, X.; Liu, C.; Pei, X. Measurement of water-oil ratio in crude oil based on modes classification. J. Chem. Ind. Eng. 2008, 59, 970–976. [Google Scholar]
- Gade, M.; Alpers, W.; Hühnerfuss, H.; Lange, P.A. Wind Wave Tank Measurements of Wave Damping and Radar Cross Sections in the Presence of Monomolecular Surface Films. J. Geophys. Res. Ocean. 1998, 103, 3167–3178. [Google Scholar] [CrossRef]
- Yu, F.; Sun, W.; Li, J.; Zhao, Y.; Zhang, Y.; Chen, G. An Improved Otsu Method for Oil Spill Detection from SAR Images. Oceanologia 2017, 59, 311–317. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, C.; Teng, X.; Cao, L.; Li, J. Oil Spill Detection Based on a Superpixel Segmentation Method for SAR Image. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1725–1728. [Google Scholar]
- Magid, A.; Rotman, S.R.; Weiss, A.M. Comments on Picture Thresholding Using an Iterative Selection Method. IEEE Trans. Syst. Man Cybern. 1990, 20, 1238–1239. [Google Scholar] [CrossRef]
- Trussell, H.J. Comments on “Picture Thresholding Using an Iterative Selection Method”. IEEE Trans. Syst. Man Cybern. 1979, 9, 311. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Perrie, W.; Garcia-Pineda, O. Compact Polarimetric Synthetic Aperture Radar for Marine Oil Platform and Slick Detection. IEEE Trans. Geosci. Remote Sens. 2016, 55, 1407–1423. [Google Scholar] [CrossRef]
- Caruso, M.J.; Migliaccio, M.; Hargrove, J.T.; Garcia-Pineda, O.; Graber, H.C. Oil Spills and Slicks Imaged by Synthetic Aperture Radar. Oceanography 2013, 26, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Nunziata, F.; Gambardella, A.; Migliaccio, M. A Unitary Mueller-Based View of Polarimetric SAR Oil Slick Observation. Int. J. Remote Sens. 2012, 33, 6403–6425. [Google Scholar] [CrossRef]
- Nunziata, F.; Migliaccio, M.; Li, X. Sea Oil Slick Observation Using Hybrid-Polarity SAR Architecture. IEEE J. Ocean. Eng. 2014, 40, 426–440. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
Series Number of Case | Data Time (UTC) | Latitude and Longitude | Range of Incident Angle | Dark Spot |
---|---|---|---|---|
1 | 2010-5-8 12:01:25 | 26.47°–26.81°N, 92.19°–91.86°W | 41.94°–43.30° | Oil |
2 | 2010-5-15 11:56:36 | 28.23°–28.55°N, 88.14°–88.48°W | 29.17°–30.92° | Oil |
3 | 2012-6-15 06:20:30 | 59.65°–59.96°N, 2.21°–2.80°E | 32.01°–30.30° | Oil, emulsion |
4 | 2010-5-8 12:01:27 | 26.28°–26.65°N, 91.89°–92.23°W | 41.94°–43.31° | Oil |
5 | 2013-1-17 11:30:53 | 30.86°–31.19°N, 80.69°–81.03°W | 25.77°–27.60° | Low wind area |
6 | 2009-7-17 21:39:07 | 43.91°–44.22°N, 56.96°–57.37°W | 32.38°–34.03° | Low wind area |
Data (Time of Release) | Vol. (m3) | Subjected to | Age (Hours) | |
---|---|---|---|---|
Emulsion a | 2012-6-14 | 14 | Mechanical recovery (~12 m3 left on surface) | 14 |
Emulsion b | 2012-6-14 | 17 | Mechanical recovery (~7 m3 left on surface) | 17 |
Emulsion c | 2012-6-14 | 10 | Mechanical recovery (~4.8 m3 left on surface) | 22 |
Plant oil | 2012-6-14 | 0.4 | Untouched | 14 |
Case Number | 1 | 2 | 3 | 4 | 5 | 6 |
Threshold | 1.1135 | 1.1110 | 1.1093 | 1.1097 | 1.1029 | 1.1106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, T.; Ouyang, R.; Perrie, W.; Zhao, L.; Zhang, X. Proof and Application of Discriminating Ocean Oil Spills and Seawater Based on Polarization Ratio Using Quad-Polarization Synthetic Aperture Radar. Remote Sens. 2023, 15, 1855. https://doi.org/10.3390/rs15071855
Xie T, Ouyang R, Perrie W, Zhao L, Zhang X. Proof and Application of Discriminating Ocean Oil Spills and Seawater Based on Polarization Ratio Using Quad-Polarization Synthetic Aperture Radar. Remote Sensing. 2023; 15(7):1855. https://doi.org/10.3390/rs15071855
Chicago/Turabian StyleXie, Tao, Ruihang Ouyang, Will Perrie, Li Zhao, and Xiaoyun Zhang. 2023. "Proof and Application of Discriminating Ocean Oil Spills and Seawater Based on Polarization Ratio Using Quad-Polarization Synthetic Aperture Radar" Remote Sensing 15, no. 7: 1855. https://doi.org/10.3390/rs15071855
APA StyleXie, T., Ouyang, R., Perrie, W., Zhao, L., & Zhang, X. (2023). Proof and Application of Discriminating Ocean Oil Spills and Seawater Based on Polarization Ratio Using Quad-Polarization Synthetic Aperture Radar. Remote Sensing, 15(7), 1855. https://doi.org/10.3390/rs15071855