Exploring the Use of Orthophotos in Google Earth Engine for Very High-Resolution Mapping of Impervious Surfaces: A Data Fusion Approach in Wuppertal, Germany
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Collection and Pre-Processing
2.2.1. Optical Data
2.2.2. Topographic Data
2.2.3. ALKIS Land Use Data
3. Methods
3.1. Feature Extraction
3.1.1. Spectral Features
3.1.2. Topographic Features
3.1.3. Texture Features
3.2. Pixel-Based Random Forest Classification
3.2.1. Generation of Training Samples
3.2.2. Random Forest Classification
3.2.3. Feature Importance
3.2.4. Accuracy Assessment
3.3. Data Superimposition
4. Results
4.1. Results of the Proposed Methodology
4.2. Accuracy Assessment and Feature Importance
4.2.1. Accuracy Assessment of the Pixel-Based Random Forest Classification
4.2.2. Feature Importance
4.3. Data Superimposition
4.4. Visual Assessment of the Results
5. Discussion
5.1. Classification Approach
5.1.1. Drivers of Inaccuracies in the Random Forest Classification Approach
5.1.2. Challenges in the Application within City Boundaries
5.1.3. Usage of Multi-Features
5.1.4. Limitations in Further Applications
5.2. Selective ALKIS Data Fusion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- German Federal Government. German Sustainable Development Strategy: Update 2021. 2021. Available online: https://www.bundesregierung.de/breg-de/service/publikationen/german-sustainable-development-strategy-update-2021-summary-version-1942598 (accessed on 28 November 2022).
- Scalenghe, R.; Marsan, F.A. The anthropogenic sealing of soils in urban areas. Landsc. Urban Plan. 2009, 90, 1–10. [Google Scholar] [CrossRef]
- Arnold, C.L.; Gibbons, C.J. Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. J. Am. Plan. Assoc. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Artmann, M. Institutional efficiency of urban soil sealing management—From raising awareness to better implementation of sustainable development in Germany. Landsc. Urban Plan. 2014, 131, 83–95. [Google Scholar] [CrossRef]
- Barnes, K.B.; Morgan, J.; Roberge, M. Impervious Surfaces and the Quality of Natural and Built Environments, Baltimore, Maryland. 2001. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=f8a7d8f4148029dca5a37cce9f7b67552ad6a95a (accessed on 28 November 2022).
- Memon, R.A.; Leung, D.Y.C.; Chunho, L. A review on the generation, determination and mitigation of urban heat island. J. Environ. Sci. 2008, 20, 120–128. [Google Scholar] [CrossRef]
- Schmitz, J.; Fina, S.; Riembauer, G.; Hollen, M. Entwicklung der Siedlungs-und Verkehrsfläche nachgerechnet: Ein Plädoyer für frei zugängliche ALKIS-Daten. In Dresdner Flächennutzungssymposium; Rhombos: Berlin, Germany, 2021; Volume 79, pp. 161–169. [Google Scholar] [CrossRef]
- Frie, B.; Hensel, R. Schätzverfahren zur Bodenversiegelung: Ansatz der Umweltökonomischen Gesamtrechnungen der Länder. In Flächennutzungsmonitoring I. Konzepte—Indikatoren—Statistik; Meinel, G., Schumacher, U., Eds.; Shaker: Aachen, Germany, 2009; pp. 17–45. [Google Scholar]
- Schmidt, S.; Barron, C. Mapping Impervious Surfaces Precisely—A GIS-Based Methodology Combining Vector Data and High-Resolution Airborne Imagery. J. Geovisualization Spat. Anal. 2020, 4, 14. [Google Scholar] [CrossRef]
- Riembauer, G.; Weinmann, A.; Xu, S.; Eichfuss, S.; Eberz, C.; Neteler, M. Germany-wide Sentinel-2 based land cover classification and change detection for settlement and infrastructure monitoring. In Proceedings of the 2021 Conference on Big Data from Space, Virtual, 18–20 May 2021; pp. 53–56. [Google Scholar]
- Sandmann, S.; Hochgürtel, G.; Piroska, R.; Steffens, C. Cop4ALL NRW–Ableitung der Landbedeckung in Nordrhein-Westfalen mit Fernerkundung und künstlicher Intelligenz. Z. Geodäsie Geoinf. Und Landmanagement 2022. [Google Scholar] [CrossRef]
- Yuan, F.; Bauer, M.E. Mapping impervious surface area using high resolution imagery: A comparison of object-based and per pixel classification. In Proceedings of the ASPRS 2006 Annual Conference, Reno, NV, USA, 1–5 May 2006; pp. 1–5. [Google Scholar]
- Hu, X.; Weng, Q. Impervious surface area extraction from IKONOS imagery using an object-based fuzzy method. Geocarto Int. 2011, 26, 3–20. [Google Scholar] [CrossRef]
- Yang, J.; He, Y. Automated mapping of impervious surfaces in urban and suburban areas: Linear spectral unmixing of high spatial resolution imagery. Int. J. Appl. Earth Obs. Geoinf. 2017, 54, 53–64. [Google Scholar] [CrossRef]
- Dare, P.M. Shadow Analysis in High-Resolution Satellite Imagery of Urban Areas. In Photogrammetric Engineering & Remote Sensing; American Society for Photogrammetry and Remote Sensing: Baton Rouge, LA, USA, 2005; Volume 71, pp. 169–177. [Google Scholar]
- Yang, J.; He, Y.; Caspersen, J. Fully constrained linear spectral unmixing based global shadow compensation for high resolution satellite imagery of urban areas. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 88–98. [Google Scholar] [CrossRef]
- Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to extract impervious surface areas from satellite images. Int. J. Digit. Earth 2014, 7, 93–112. [Google Scholar] [CrossRef]
- Hsieh, P.-F.; Lee, L.C.; Chen, N.-Y. Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2657–2663. [Google Scholar] [CrossRef]
- Dubertret, F.; Le Tourneau, F.-M.; Villarreal, M.L.; Norman, L.M. Monitoring Annual Land Use/Land Cover Change in the Tucson Metropolitan Area with Google Earth Engine (1986–2020). Remote Sens. 2022, 14, 2127. [Google Scholar] [CrossRef]
- Verde, N.; Kokkoris, I.P.; Georgiadis, C.; Kaimaris, D.; Dimopoulos, P.; Mitsopoulos, I.; Mallinis, G. National Scale Land Cover Classification for Ecosystem Services Mapping and Assessment, Using Multitemporal Copernicus EO Data and Google Earth Engine. Remote Sens. 2020, 12, 3303. [Google Scholar] [CrossRef]
- Guo, X.; Zhang, C.; Luo, W.; Yang, J.; Yang, M. Urban Impervious Surface Extraction Based on Multi-Features and Random Forest. IEEE Access 2020, 8, 226609–226623. [Google Scholar] [CrossRef]
- Zha, Y.; Gao, J.; Ni, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int. J. Remote Sens. 2003, 24, 583–594. [Google Scholar] [CrossRef]
- Kaur, R.; Pandey, P. A review on spectral indices for built-up area extraction using remote sensing technology. Arab J Geosci 2022, 15, 1–22. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, H.; Song, Q.; Zheng, K. A Novel Index for Impervious Surface Area Mapping: Development and Validation. Remote Sens. 2018, 10, 1521. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Bramhe, V.S.; Ghosh, S.K.; Garg, P.K. Extraction Of Built-Up Area By Combining Textural Features And Spectral Indices From LANDSAT-8 Multispectral Image. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-5, 727–733. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Puissant, A.; Hirsch, J.; Weber, C. The utility of texture analysis to improve per-pixel classification for high to very high spatial resolution imagery. Int. J. Remote Sens. 2005, 26, 733–745. [Google Scholar] [CrossRef]
- Ghamisi, P.; Gloaguen, R.; Atkinson, P.M.; Benediktsson, J.A.; Rasti, B.; Yokoya, N.; Wang, Q.; Hofle, B.; Bruzzone, L.; Bovolo, F.; et al. Multisource and Multitemporal Data Fusion in Remote Sensing: A Comprehensive Review of the State of the Art. IEEE Geosci. Remote Sens. Mag. 2019, 7, 6–39. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Li, J.; Chapman, M.; Deng, F.; Ji, Z.; Yang, X. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. Int. J. Remote Sens. 2013, 34, 5166–5186. [Google Scholar] [CrossRef]
- Yin, J.; Fu, P.; Hamm, N.A.S.; Li, Z.; You, N.; He, Y.; Cheshmehzangi, A.; Dong, J. Decision-Level and Feature-Level Integration of Remote Sensing and Geospatial Big Data for Urban Land Use Mapping. Remote Sens. 2021, 13, 1579. [Google Scholar] [CrossRef]
- Yin, J.; Dong, J.; Hamm, N.A.; Li, Z.; Wang, J.; Xing, H.; Fu, P. Integrating remote sensing and geospatial big data for urban land use mapping: A review. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102514. [Google Scholar] [CrossRef]
- Wan, T.; Lu, H.; Lu, Q.; Luo, N. Classification of High-Resolution Remote-Sensing Image Using OpenStreetMap Information. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2305–2309. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Prasai, R.; Schwertner, T.W.; Mainali, K.; Mathewson, H.; Kafley, H.; Thapa, S.; Adhikari, D.; Medley, P.; Drake, J. Application of Google earth engine python API and NAIP imagery for land use and land cover classification: A case study in Florida, USA. Ecol. Inform. 2021, 66, 101474. [Google Scholar] [CrossRef]
- Zhang, H.; Gorelick, S.M.; Zimba, P.V. Extracting Impervious Surface from Aerial Imagery Using Semi-Automatic Sampling and Spectral Stability. Remote Sens. 2020, 12, 506. [Google Scholar] [CrossRef] [Green Version]
- Stadt Wuppertal. Wuppertal/Wirtschaft & Stadtentwicklung: Daten und Fakten. Available online: https://www.wuppertal.de/wirtschaft-stadtentwicklung/daten_fakten/index.php (accessed on 19 March 2023).
- Stadt Wuppertal. Wuppertal/Wirtschaft & Stadtentwicklung: Kompetenter Standort. Available online: https://www.wuppertal.de/wirtschaft-stadtentwicklung/standort/index.php (accessed on 23 March 2023).
- ILS—Institut für Landes-und Stadtentwicklungsforschung gGmbH. Incora Fläche—Dashboard. Available online: https://incora-flaeche.de/?mdatensatz=incora-bodenbedeckung&mz=11.964&mc=7.153-51.256&mdatensatzview=klassen (accessed on 2 February 2023).
- Bezirksregierung Köln. Digitale Orthophotos. Available online: https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/luftbildinformationen/aktuell/digitale_orthophotos/index.html (accessed on 6 January 2023).
- Bezirksregierung Köln. Digitales Geländemodell. Available online: https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/hoehenmodelle/digitale_gelaendemodelle/gelaendemodell/index.html (accessed on 22 January 2023).
- Bezirksregierung Köln. bDOM und nDOM—Digitale Oberflächenmodelle aus Luftbildern. Available online: https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/stage_bdom_ndom/index.html (accessed on 22 January 2023).
- Bezirksregierung Köln. ALKIS—Standard. Available online: https://www.bezreg-koeln.nrw.de/brk_internet/geobasis/liegenschaftskataster/alkis/index.html (accessed on 22 January 2023).
- AdV. ALKIS®—Grunddatenbestand und Länderspezifische Inhalte. 2012. Available online: https://www.adv-online.de/AdV-Produkte/Liegenschaftskataster/Download/binarywriterservlet?imgUid=b7144748-6046-5314-0825-f47072e13d63&uBasVariant=11111111-1111-1111-1111-111111111111&isDownload=true (accessed on 6 January 2023).
- ESRI. ArcGIS Data Interoperability Extension for Desktop—ArcGIS Pro|Documentation. Available online: https://pro.arcgis.com/en/pro-app/latest/help/data/data-interoperability/what-is-the-data-interoperability-extension.htm (accessed on 22 January 2023).
- Lu, D.; Weng, Q. Use of impervious surface in urban land-use classification. Remote Sens. Environ. 2006, 102, 146–160. [Google Scholar] [CrossRef]
- Huete, A. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Li, C.; Shao, Z.; Zhang, L.; Huang, X.; Zhang, M. A Comparative Analysis of Index-Based Methods for Impervious Surface Mapping Using Multiseasonal Sentinel-2 Satellite Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3682–3694. [Google Scholar] [CrossRef]
- Qu, L.; Chen, Z.; Li, M.; Zhi, J.; Wang, H. Accuracy Improvements to Pixel-Based and Object-Based LULC Classification with Auxiliary Datasets from Google Earth Engine. Remote Sens. 2021, 13, 453. [Google Scholar] [CrossRef]
- Chen, J.; Du, P.; Wu, C.; Xia, J.; Chanussot, J. Mapping Urban Land Cover of a Large Area Using Multiple Sensors Multiple Features. Remote Sens. 2018, 10, 872. [Google Scholar] [CrossRef] [Green Version]
- Google Developers. ee.Image.glcmTexture. Available online: https://developers.google.com/earth-engine/apidocs/ee-image-glcmtexture (accessed on 13 January 2023).
- Dorigo, W.; Lucieer, A.; Podobnikar, T.; Čarni, A. Mapping invasive Fallopia japonica by combined spectral, spatial, and temporal analysis of digital orthophotos. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 185–195. [Google Scholar] [CrossRef]
- Ghazaryan, G.; Rienow, A.; Oldenburg, C.; Thonfeld, F.; Trampnau, B.; Sticksel, S.; Jürgens, C. Monitoring of Urban Sprawl and Densification Processes in Western Germany in the Light of SDG Indicator 11.3.1 Based on an Automated Retrospective Classification Approach. Remote Sens. 2021, 13, 1694. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Google Developers. ee.Classifier.smileRandomForest. Available online: https://developers.google.com/earth-engine/apidocs/ee-classifier-smilerandomforest (accessed on 13 January 2023).
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Kattenborn, T.; Lopatin, J.; Förster, M.; Braun, A.C.; Fassnacht, F.E. UAV data as alternative to field sampling to map woody invasive species based on combined Sentinel-1 and Sentinel-2 data. Remote Sens. Environ. 2019, 227, 61–73. [Google Scholar] [CrossRef]
- Stadt Wuppertal. Zukunft Wuppertal: Ein Stadtentwicklungskonzept für Wuppertal. 2019. Available online: https://www.wuppertal.de/wirtschaft-stadtentwicklung/stadtentwicklung/stadtentwicklungskonzept.php (accessed on 3 February 2023).
- Zhou, T.; Fu, H.; Sun, C.; Wang, S. Shadow Detection and Compensation from Remote Sensing Images under Complex Urban Conditions. Remote Sens. 2021, 13, 699. [Google Scholar] [CrossRef]
- Fang, H.; Du, P.; Wang, X. A novel unsupervised binary change detection method for VHR optical remote sensing imagery over urban areas. Int. J. Appl. Earth Obs. Geoinf. 2022, 108, 102749. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A.B. Using Google’s cloud-based platform for digital soil mapping. Comput. Geosci. 2015, 83, 80–88. [Google Scholar] [CrossRef]
- Google. Storage and Upload Limits for Google Workspace. Available online: https://support.google.com/a/answer/172541?hl=de (accessed on 13 January 2023).
Area of Object Type | Object Type Group | Object Types (Identifier Code) | Value Types (Identifier Code) |
---|---|---|---|
Actual Use | Settlements | Opencast Mine, Pit, Quarry (41005) | Earths, Loose Rock (1000) |
Clay (1001) | |||
Bentonite (1002) | |||
Etc. | |||
Traffic | Road Traffic (42001) | Building and Open Space to Traffic Facilities, Road (2311) | |
Road Drainage System (2313) Pedestrian Zone (5130) | |||
Vegetation | Agriculture (43001) | Farmland (1010) | |
Grassland (1020) | |||
Wasteland (1200) | |||
Forest (43002) | Deciduous Trees (1100) | ||
Coniferous Trees (1200) | |||
Mixed Trees (1300) | |||
Water | Running Waters (44001) | Rivers (8200) | |
Canal (8300) | |||
Standing Waters (44006) | Lakes (8610) | ||
Reservoirs (8630) | |||
Storage Basins (8631) | |||
Quarry Pond (8640) | |||
Buildings | Details of the Building | Building (31001) | Residential Building (1000) |
Shopping Centre (2052) | |||
Commercial and Industrial Buildings (2100) | |||
Car Park (2461) | |||
Etc. |
Number of Input Data | Description | Data Source |
---|---|---|
Spectral Bands (4) | R, G, B, NIR | TDOP [43] |
Spectral Indices (4) | PISI, NDVI, NDWI, SAVI | TDOP [43] |
Texture Features (8) | Mean (R, G, B, NIR) | TDOP [43] |
Contrast (R, G, B, NIR) | ||
Topographic Features (2) | Elevation, Slope | nDSM [45] |
DEM [44] |
Impervious | Non-Impervious | Total | UA * | |
---|---|---|---|---|
Impervious | 120 | 10 | 130 | 92.31% |
Non-Impervious | 10 | 120 | 130 | 92.31% |
Total | 130 | 130 | 260 | |
PA * | 92.31% | 92.31% | ||
OA * | 92.31% | |||
KC * | 84.62% |
Observation | Improvement Requirement | Selected ALKIS Data (Identifier Code) |
---|---|---|
Overestimation | Quarry (e.g., gravel, crushed stone, high-density lanes) | Open Cast Mine, Pit, Quarry (41005) |
Civil Engineering Structures (e. g. suspension railway) | River (8200) | |
River (e.g., dark-appearing water) | ||
Underestimation | Shaded Areas and Obscured Areas (e.g., caused by buildings or trees) | Road Traffic (42001) * |
Rooftops (e.g., green roofs, dark-appearing rooftops) | Building (31001) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langenkamp, J.-P.; Rienow, A. Exploring the Use of Orthophotos in Google Earth Engine for Very High-Resolution Mapping of Impervious Surfaces: A Data Fusion Approach in Wuppertal, Germany. Remote Sens. 2023, 15, 1818. https://doi.org/10.3390/rs15071818
Langenkamp J-P, Rienow A. Exploring the Use of Orthophotos in Google Earth Engine for Very High-Resolution Mapping of Impervious Surfaces: A Data Fusion Approach in Wuppertal, Germany. Remote Sensing. 2023; 15(7):1818. https://doi.org/10.3390/rs15071818
Chicago/Turabian StyleLangenkamp, Jan-Philipp, and Andreas Rienow. 2023. "Exploring the Use of Orthophotos in Google Earth Engine for Very High-Resolution Mapping of Impervious Surfaces: A Data Fusion Approach in Wuppertal, Germany" Remote Sensing 15, no. 7: 1818. https://doi.org/10.3390/rs15071818
APA StyleLangenkamp, J. -P., & Rienow, A. (2023). Exploring the Use of Orthophotos in Google Earth Engine for Very High-Resolution Mapping of Impervious Surfaces: A Data Fusion Approach in Wuppertal, Germany. Remote Sensing, 15(7), 1818. https://doi.org/10.3390/rs15071818