Extended Cross-Calibration Analysis Using Data from the Landsat 8 and 9 Underfly Event
Abstract
1. Introduction
1.1. Underfly Event
1.2. Sources of Uncertainty
1.2.1. Geometric Uncertainty
1.2.2. Spectral Uncertainty
1.2.3. Angular Uncertainty
1.3. Phase 1 Retrospection
1.3.1. Advantages
1.3.2. Shortcomings
2. Methodology
2.1. Spectral Characterization of Land Cover Types
2.1.1. MODIS Land Cover Product
2.1.2. Global Classification of Pixels during Underfly
2.2. Data Analysis
2.2.1. Seasonality
2.2.2. Signal to Noise Relationship
2.2.3. Data-Driven Filtering
2.3. BRDF Observations
2.4. SBAF Correction
3. Results
3.1. Cross-Calibration Gains—Reflectance
3.1.1. Weighted Variance Estimator
3.1.2. VAAD Influence on Results
3.1.3. SBAF Correction
3.2. Cross-Calibration Gains—Radiance
3.3. Uncertainty Analysis
3.3.1. Spectral Uncertainty
3.3.2. BRDF Uncertainty
3.3.3. Geometric Uncertainty
3.3.4. Total Uncertainty
4. Discussion
4.1. Results Analysis
4.2. Future Underfly Manuevers
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
CA | Barren1 | Barren2 | Barren3 | ClosedShrub | Crops | DecBroad | DecNeed | EvBroad |
0–20 | 0.8716 | 0.9649 | 0.8868 | 0.8026 | 0.7616 | 0.9333 | 0.7833 | 0.7882 |
10–30 | 0.6414 | 0.9524 | 0.9948 | 0.9676 | 0.7198 | 0.8416 | 0.5831 | 0.7561 |
20–40 | 0.9746 | 0.8418 | 0.7587 | 0.8336 | 0.8953 | 0.7153 | 0.8502 | 0.8235 |
30–50 | 0.7601 | 0.9079 | 0.9814 | 0.7747 | 0.9324 | 0.8577 | 0.9910 | 0.7841 |
40–60 | 0.7594 | 0.8536 | 0.9819 | 0.9045 | 0.9923 | 0.9471 | 0.9684 | 0.8920 |
50–70 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
60–80 | 0.8184 | 0.9280 | 0.9871 | 0.8269 | 0.6558 | 0.7863 | 0.7117 | 0.8789 |
70–90 | 0.3640 | 0.9385 | 0.9956 | 0.1166 | 0.8301 | 0.7092 | 0.5255 | 0.5539 |
CA | EvNeed | Grass | MixedFor | NatVeg | OpenShrub | Savanna | WoodySav | |
0–20 | 0.8844 | 0.9605 | 0.7001 | 0.7712 | 0.9993 | 0.8468 | 0.9430 | |
10–30 | 0.9443 | 0.8349 | 0.9932 | 0.9116 | 0.9840 | 0.9934 | 0.9249 | |
20–40 | 0.9003 | 0.9207 | 0.8473 | 0.9623 | 0.9742 | 0.8485 | 0.9760 | |
30–50 | 0.9028 | 0.8395 | 0.7358 | 0.8078 | 0.9788 | 0.9203 | 0.8097 | |
40–60 | 0.9033 | 0.9533 | 0.8518 | 0.9962 | 0.9639 | 0.9811 | 0.8986 | |
50–70 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
60–80 | 0.7074 | 0.9948 | 0.9832 | 0.8494 | 0.7176 | 0.4844 | 0.9893 | |
70–90 | 0.6281 | 0.4169 | 0.7273 | 0.3087 | 0.4939 | 0.3638 | 0.4562 |
NIR | Barren1 | Barren2 | Barren3 | ClosedShrub | Crops | DecBroad | DecNeed | EvBroad |
0–20 | 0.0052 | 0.0004 | 0.0020 | 0.0423 | 0.0123 | 0.6946 | 0.0458 | 0.2458 |
10–30 | 0.0393 | 0.7505 | 0.1070 | 0.4638 | 0.4542 | 0.4155 | 0.8374 | 0.0046 |
20–40 | 0.1207 | 0.0043 | 0.9258 | 0.3504 | 0.0133 | 0.0047 | 0.1800 | 0.4647 |
30–50 | 0.6059 | 0.1606 | 0.4763 | 0.0838 | 0.0260 | 0.5023 | 0.5692 | 0.5833 |
40–60 | 0.9068 | 0.2603 | 0.9398 | 0.4909 | 0.1145 | 0.7847 | 0.8391 | 0.2597 |
50–70 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
60–80 | 0.7786 | 0.3516 | 0.7036 | 0.3136 | 0.1068 | 0.0331 | 0.8417 | 0.7532 |
70–90 | 0.2552 | 0.2167 | 0.8661 | 0.0037 | 0.8733 | 0.6044 | 0.4770 | 0.2837 |
NIR | EvNeed | Grass | MixedFor | NatVeg | OpenShrub | Savanna | WoodySav | |
0–20 | 0.0085 | 0.0006 | 0.7018 | 0.9596 | 0.0003 | 0.0837 | 0.0180 | |
10–30 | 0.8709 | 0.1364 | 0.0433 | 0.8758 | 0.0003 | 0.8795 | 0.0010 | |
20–40 | 0.8567 | 0.2009 | 0.1961 | 0.1051 | 0.3255 | 0.1354 | 0.0000 | |
30–50 | 0.8462 | 0.1614 | 0.7879 | 0.5485 | 0.3377 | 0.1343 | 0.3131 | |
40–60 | 0.8743 | 0.9424 | 0.2594 | 0.5539 | 0.6783 | 0.5187 | 0.7324 | |
50–70 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
60–80 | 0.9102 | 0.3674 | 0.3017 | 0.5841 | 0.8025 | 0.2013 | 0.8368 | |
70–90 | 0.7138 | 0.7657 | 0.4444 | 0.0025 | 0.2192 | 0.8652 | 0.7935 |
References
- Masek, J.G.; Wulder, M.A.; Markham, B.; McCorkel, J.; Crawford, C.J.; Storey, J.; Jenstrom, D.T. Landsat 9: Empowering open science and applications through continuity. Remote Sens. Environ. 2020, 248, 111968. [Google Scholar] [CrossRef]
- Markham, M.B.; McCorkel, J.; Montanaro, M.; Morland, E.; Pearlman, A.; Pedelty, J.; Wenny, B.; Barsi, J.; Donley, E.; Efremova, B.; et al. Landsat 9: Mission Status and Prelaunch Instrument Performance Characterization and Calibration. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5788–5791. [Google Scholar] [CrossRef]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef]
- Teillet, P.M.; Markham, B.L.; Barker, J.L.; Storey, J.C.; Irish, R.R.; Seiferth, J.C. Landsat sensor cross-calibration using nearly coincidental matching scenes. In Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI; SPIE: Bellingham, WA, USA, 2000; Volume 4049. [Google Scholar]
- Gross, G.; Helder, D.; Begeman, C.; Leigh, L.; Kaewmanee, M.; Shah, R. Initial Cross-Calibration of Landsat 8 and Landsat 9 Using the Simultaneous Underfly Event. Remote Sens. 2022, 14, 2418. [Google Scholar] [CrossRef]
- Teillet, P.M.; Fedosejevs, G.; Thome, K.J.; Barker, J.L. Impacts of spectral band difference effects on radiometric cross-calibration between satellite sensors in the solar-reflective spectral domain. Remote Sens. Environ. 2007, 110, 393–409. [Google Scholar] [CrossRef]
- Chander, G.; Mishra, N.; Helder, D.L.; Aaron, D.; Choi, T.; Angal, A.; Xiong, X. Use of EO-1 Hyperion data to calculate spectral band adjustment factors (SBAF) between the L7 ETM+ and Terra MODIS sensors. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010. [Google Scholar]
- Wanner, W.; Li, X.; Strahler, A.H. On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. Atmos. 1995, 100, 21077–21089. [Google Scholar] [CrossRef]
- Wanner, W.; Strahler, A.H.; Hu, B.; Lewis, P.; Muller, J.-P.; Li, X.; Schaaf, C.L.B.; Barnsley, M.J. Global retrieval of bidirectional reflectance and albedo over land from EOS MODIS and MISR data: Theory and algorithm. J. Geophys. Res. Atmos. 1997, 102, 17143–17161. [Google Scholar] [CrossRef]
- Lucht, W.; Schaaf, C.B.; Strahler, A.H. An algorithm for the retrieval of albedo from space using semiempirical BRDF models. IEEE Trans. Geosci. Remote Sens. 2000, 38, 977–998. [Google Scholar] [CrossRef]
- Strahler, A.H.; Muchoney, D.; Borak, J.; Friedl, F.; Gopal, S.; Lambin, L.; Moody, A. MODIS Land Cover Product Algorithm Theoretical Basis Document (ATBD). 1999, 72. Available online: http://modis.gsfc.nasa.gov/data/atbd/atbd_mod12.pdf (accessed on 13 October 2021).
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY: Mission objectives and measurement modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef]
- Leigh, L.; Shrestha, M.; Hasan, N.; Kaewmanee, M. Classification of North Africa for Use as an Extended Pseudo Invariant Calibration Site for Radiometric Calibration and Stability Monitoring of Optical Satellite Sensors. In Proceedings of the CALCON 2019, Utah State University, Logan, UT, USA, 19–21 September 2019. [Google Scholar]
- Shrestha, M.; Leigh, L.; Helder, D. Classification of North Africa for use as an extended pseudo invariant calibration site (EPICS) for radiometric calibration and stability monitoring of optical satellite sensors. Remote Sens. 2019, 11, 875. [Google Scholar] [CrossRef]
- Rueda, J.F.; Leigh, L.; Pinto, C.T.; Kaewmanee, M.; Helder, D. Classification and Evaluation of Extended PICS (EPICS) on a Global Scale for Calibration and Stability Monitoring of Optical Satellite Sensors. Remote Sens. 2021, 13, 3350. [Google Scholar] [CrossRef]
- Remote Sensing Phenology. NDVI, the Foundation for Remote Sensing Phenology. USGS. 2018. Available online: https://www.usgs.gov/special-topics/remote-sensing-phenology/science/ndvi-foundation-remote-sensing-phenology (accessed on 25 October 2021).
- Diek, S.; Fornallaz, F.; Schaepman, M.E.; De Jong, R. Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sens. 2017, 9, 1245. [Google Scholar] [CrossRef]
- Landsat 8 Data Users Handbook. USGS. 2019. Available online: https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook (accessed on 25 October 2021).
- Thenkabail, P.; Aneece, I. Global Hyperspectral Imaging Spectral-library of Agricultural crops for Conterminous United States V001 [Data Set]. NASA EOSDIS Land Processes DAAC. 2019. Available online: https://lpdaac.usgs.gov/products/ghisaconusv001 (accessed on 20 March 2021).
- Meerdink, S.K.; Hook, S.J.; Roberts, D.A.; Abbott, E.A. The ECOSTRESS spectral library version 1.0. Remote Sens. Environ. 2019, 230, 111196. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- World Agroforestry (ICRAF); International Soil Reference and Information Centre (ISRIC). ICRAF-ISRIC Soil VNIR Spectral Library. In World Agroforestry—Research Data Repository, V1; World Agroforestry (ICRAF): Nairobi, Kenya, 2021. [Google Scholar] [CrossRef]
- Salvatori, R.; Salzano, R.; Franco, S.D.; Fontinovo, G.; Plini, P. SISpec 2.0 Snow-Ice Spectral Library; National Research Council of Italy, Institute of Polar Sciences: Rome, Italy, 2020. [Google Scholar]
- U.S. Standard Atmosphere. National Oceanic and Atmospheric Administration. 1976. Available online: https://www.ngdc.noaa.gov/stp/space-weather/online-publications/miscellaneous/us-standard-atmosphere-1976/us-standard-atmosphere_st76-1562_noaa.pdf (accessed on 14 March 2022).
- Hartung, J.; Knapp, G.; Singa, B.K. Statistical Meta-Analysis with Applications; John Wiley & Sons: Hoboken, NJ, USA, 2008; pp. 44–46. [Google Scholar]
- Thuillier, G.; Hers, M.; Simon, P.C.; Labs, D.; Mandel, H.; Gillotay, D.; Foujols, T. The solar spectral irradiance from 200 to 2400 nm as measured by the SOLSPEC spectrometer from the ATLAS 1-2-3 and EURECA missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
Bands | Wavelengths (Micrometers) | Resolution (Meters) |
---|---|---|
Band 1—Coastal Aerosol | 0.43–0.45 | 30 |
Band 2—Blue | 0.45–0.51 | 30 |
Band 3—Green | 0.53–0.59 | 30 |
Band 4—Red | 0.64–0.67 | 30 |
Band 5—Near Infrared (NIR) | 0.85–0.88 | 30 |
Band 6—Short Wave Infrared 1 (SWIR1) | 1.57–1.65 | 30 |
Band 7—SWIR2 | 2.11–2.29 | 30 |
Band 8—Panchromatic Band | 0.50–0.68 | 15 |
Band 9—Cirrus | 1.36–1.38 | 30 |
Band 10—Thermal Infrared 1 (TIRS 1) | 10.6–11.19 | 100 |
Band 11—TIRS 2 | 11.5–12.51 | 100 |
Name | Value | Description |
---|---|---|
Evergreen Needleleaf Forests | 1 | Dominated by evergreen conifer trees (canopy > 2 m). Tree cover > 60%. |
Evergreen Broadleaf Forests | 2 | Dominated by evergreen broadleaf and palmate trees (canopy > 2 m). Tree cover > 60%. |
Deciduous Needleleaf Forests | 3 | Dominated by deciduous needleleaf (larch) trees (canopy > 2 m). Tree cover > 60%. |
Deciduous Broadleaf Forests | 4 | Dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60%. |
Mixed Forests | 5 | Dominated by neither deciduous nor evergreen (40–60% of each) tree type (canopy > 2 m). Tree cover > 60%. |
Closed Shrublands | 6 | Dominated by woody perennials (1–2 m height) > 60% cover. |
Open Shrublands | 7 | Dominated by woody perennials (1–2 m height) 10–60% cover. |
Woody Savannas | 8 | Tree cover 30–60% (canopy > 2 m). |
Savannas | 9 | Tree cover 10–30% (canopy > 2 m). |
Grasslands | 10 | Dominated by herbaceous annuals (<2 m). |
Permanent Wetlands | 11 | Permanently inundated lands with 30–60% water cover and >10% vegetated cover. |
Croplands | 12 | At least 60% of area is cultivated cropland. |
Urban and Built-up Lands | 13 | At least 30% impervious surface area including building materials, asphalt, and vehicles. |
Cropland/Natural Vegetation Mosaics | 14 | Mosaics of small-scale cultivation 40–60% with natural tree, shrub, or herbaceous vegetation. |
Permanent Snow and Ice | 15 | At least 60% of area is covered by snow and ice for at least 10 months of the year. |
Barren | 16 | At least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% vegetation. |
Water Bodies | 17 | At least 60% of area is covered by permanent water bodies. Has not received a map label because of missing inputs. |
IGBP | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 12 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Blue | 0.103 | 0.147 | 0.072 | 0.129 | 0.120 | 0.097 | 0.127 | 0.121 | 0.129 | 0.120 | 0.131 | 0.126 |
Green | 0.076 | 0.151 | 0.053 | 0.109 | 0.113 | 0.086 | 0.128 | 0.114 | 0.129 | 0.111 | 0.111 | 0.131 |
Red | 0.058 | 0.181 | 0.048 | 0.103 | 0.121 | 0.107 | 0.185 | 0.124 | 0.147 | 0.119 | 0.101 | 0.161 |
NIR | 0.179 | 0.291 | 0.075 | 0.209 | 0.228 | 0.195 | 0.285 | 0.231 | 0.242 | 0.201 | 0.198 | 0.264 |
SWIR1 | 0.116 | 0.339 | 0.037 | 0.170 | 0.216 | 0.261 | 0.372 | 0.233 | 0.267 | 0.221 | 0.167 | 0.278 |
SWIR2 | 0.055 | 0.262 | 0.021 | 0.117 | 0.148 | 0.195 | 0.306 | 0.164 | 0.199 | 0.157 | 0.099 | 0.220 |
IGBP | Barren1 | Barren2 | Barren3 | Barren4 |
---|---|---|---|---|
Blue | 0.097 | 0.098 | 0.169 | 0.137 |
Green | 0.095 | 0.084 | 0.201 | 0.124 |
Red | 0.105 | 0.067 | 0.276 | 0.132 |
NIR | 0.139 | 0.213 | 0.375 | 0.217 |
SWIR1 | 0.178 | 0.142 | 0.457 | 0.264 |
SWIR2 | 0.153 | 0.071 | 0.398 | 0.201 |
Cross-Cal Gains | Barren1 | Barren2 | Barren3 | ClosedShrub | Crops | DecBroad | DecNeed | EvBroad | ||||||||
Band | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma |
CA | 1.000 | 0.014 | 0.999 | 0.014 | 0.997 | 0.021 | 0.999 | 0.012 | 0.998 | 0.016 | 0.999 | 0.013 | 1.000 | 0.014 | 1.000 | 0.015 |
Blue | 1.001 | 0.016 | 1.000 | 0.015 | 0.998 | 0.026 | 1.000 | 0.014 | 1.000 | 0.018 | 1.001 | 0.016 | 1.001 | 0.017 | 1.002 | 0.019 |
Green | 0.996 | 0.020 | 0.993 | 0.021 | 0.997 | 0.033 | 0.995 | 0.017 | 0.994 | 0.028 | 0.995 | 0.025 | 0.992 | 0.024 | 0.999 | 0.024 |
Red | 1.002 | 0.029 | 1.001 | 0.027 | 0.997 | 0.032 | 0.998 | 0.019 | 0.999 | 0.036 | 1.001 | 0.034 | 1.000 | 0.038 | 1.001 | 0.031 |
NIR | 1.003 | 0.031 | 1.005 | 0.028 | 0.998 | 0.024 | 0.999 | 0.023 | 1.002 | 0.031 | 1.001 | 0.029 | 1.008 | 0.054 | 1.001 | 0.026 |
SWIR1 | 1.010 | 0.045 | 1.014 | 0.037 | 0.997 | 0.026 | 1.002 | 0.021 | 1.008 | 0.055 | 1.007 | 0.040 | 1.020 | 0.069 | 1.002 | 0.027 |
SWIR2 | 1.009 | 0.040 | 1.018 | 0.054 | 0.997 | 0.032 | 1.000 | 0.029 | 1.009 | 0.060 | 1.007 | 0.089 | 1.028 | 0.082 | 1.001 | 0.035 |
Pan | 1.002 | 0.019 | 0.996 | 0.021 | 1.005 | 0.038 | 1.000 | 0.015 | 0.993 | 0.022 | 1.000 | 0.015 | 0.968 | 0.034 | 1.005 | 0.023 |
EvNeed | Grass | MixedFor | NatVeg | OpenShrub | Savanna | WoodySav | ||||||||||
Band | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | ||
CA | 0.999 | 0.014 | 1.000 | 0.013 | 1.000 | 0.015 | 0.999 | 0.013 | 0.999 | 0.019 | 0.999 | 0.012 | 1.000 | 0.015 | ||
Blue | 1.001 | 0.014 | 1.001 | 0.014 | 1.002 | 0.018 | 1.001 | 0.015 | 1.001 | 0.021 | 1.000 | 0.020 | 1.002 | 0.018 | ||
Green | 0.992 | 0.021 | 0.996 | 0.017 | 0.996 | 0.028 | 0.998 | 0.020 | 1.000 | 0.022 | 0.996 | 0.022 | 0.997 | 0.024 | ||
Red | 0.999 | 0.031 | 1.000 | 0.022 | 1.003 | 0.026 | 1.000 | 0.030 | 1.000 | 0.022 | 1.000 | 0.022 | 1.003 | 0.032 | ||
NIR | 1.004 | 0.039 | 1.001 | 0.024 | 1.004 | 0.024 | 1.001 | 0.022 | 1.000 | 0.017 | 1.001 | 0.022 | 1.004 | 0.027 | ||
SWIR1 | 1.011 | 0.052 | 1.005 | 0.027 | 1.011 | 0.034 | 1.002 | 0.027 | 0.999 | 0.019 | 1.003 | 0.025 | 1.009 | 0.034 | ||
SWIR2 | 1.016 | 0.051 | 1.003 | 0.032 | 1.012 | 0.041 | 1.001 | 0.034 | 0.999 | 0.024 | 1.002 | 0.031 | 1.010 | 0.043 | ||
Pan | 0.984 | 0.024 | 1.001 | 0.019 | 1.001 | 0.019 | 1.003 | 0.017 | 1.006 | 0.018 | 1.003 | 0.016 | 1.004 | 0.016 |
Weighted Variance Estimator | ||
---|---|---|
Band | Mean | Std Dev |
CA | 0.999 | 0.004 |
Blue | 1.001 | 0.004 |
Green | 0.996 | 0.006 |
Red | 1.000 | 0.007 |
NIR | 1.001 | 0.007 |
SWIR1 | 1.004 | 0.008 |
SWIR2 | 1.004 | 0.010 |
Pan | 1.000 | 0.005 |
IGBP | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | Pan |
---|---|---|---|---|---|---|---|---|
EvNeed | 0.998 | 0.999 | 0.998 | 1.000 | 1.000 | 1.001 | 1.004 | 1.005 |
EvBroad | 0.999 | 1.000 | 1.000 | 1.001 | 1.000 | 1.001 | 1.001 | 0.997 |
DecNeed | 0.998 | 0.999 | 0.998 | 1.000 | 1.000 | 1.001 | 1.003 | 1.006 |
DecBroad | 0.998 | 0.999 | 0.998 | 1.000 | 1.000 | 1.001 | 1.002 | 1.004 |
Mixedfor | 0.999 | 0.999 | 0.998 | 1.000 | 1.000 | 1.002 | 1.002 | 1.005 |
ClosedShrub | 0.999 | 1.000 | 0.999 | 1.001 | 1.000 | 1.001 | 1.002 | 1.000 |
OpenShrub | 0.999 | 0.999 | 1.001 | 1.001 | 1.000 | 1.000 | 1.000 | 0.992 |
WoodySav | 0.998 | 0.999 | 0.998 | 1.000 | 1.000 | 1.001 | 1.002 | 1.003 |
Savanna | 0.999 | 1.000 | 0.999 | 1.001 | 1.000 | 1.001 | 1.001 | 0.999 |
Grass | 0.998 | 0.999 | 0.999 | 1.001 | 1.000 | 1.001 | 1.001 | 0.999 |
Crops | 0.999 | 0.999 | 0.999 | 1.000 | 1.000 | 1.002 | 1.003 | 1.003 |
NatVeg | 0.999 | 1.000 | 0.999 | 1.001 | 1.000 | 1.001 | 1.002 | 1.000 |
Barren1 | 0.998 | 0.999 | 0.999 | 1.001 | 1.000 | 1.001 | 1.001 | 0.999 |
Barren2 | 0.998 | 0.999 | 0.998 | 0.999 | 1.000 | 1.002 | 1.003 | 1.009 |
Barren3 | 1.000 | 1.000 | 1.002 | 1.001 | 1.000 | 1.000 | 1.000 | 0.992 |
SBAF Corrected Gains | Barren1 | Barren2 | Barren3 | ClosedShrub | Crops | DecBroad | DecNeed | EvBroad | ||||||||
Band | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma |
CA | 1.001 | 0.014 | 1.001 | 0.015 | 0.997 | 0.021 | 1.001 | 0.012 | 1.000 | 0.016 | 1.001 | 0.013 | 1.002 | 0.014 | 1.001 | 0.015 |
Blue | 1.002 | 0.016 | 1.002 | 0.015 | 0.998 | 0.026 | 1.000 | 0.014 | 1.001 | 0.018 | 1.002 | 0.016 | 1.002 | 0.017 | 1.003 | 0.019 |
Green | 0.997 | 0.020 | 0.995 | 0.021 | 0.995 | 0.033 | 0.996 | 0.017 | 0.995 | 0.028 | 0.996 | 0.025 | 0.993 | 0.024 | 0.999 | 0.024 |
Red | 1.001 | 0.029 | 1.001 | 0.027 | 0.996 | 0.032 | 0.998 | 0.019 | 0.999 | 0.036 | 1.001 | 0.034 | 1.000 | 0.038 | 1.000 | 0.030 |
NIR | 1.003 | 0.031 | 1.005 | 0.028 | 0.998 | 0.024 | 0.999 | 0.023 | 1.002 | 0.031 | 1.001 | 0.029 | 1.008 | 0.054 | 1.001 | 0.026 |
SWIR1 | 1.009 | 0.045 | 1.011 | 0.037 | 0.997 | 0.026 | 1.001 | 0.021 | 1.006 | 0.055 | 1.005 | 0.040 | 1.018 | 0.069 | 1.001 | 0.027 |
SWIR2 | 1.008 | 0.040 | 1.015 | 0.054 | 0.996 | 0.032 | 0.999 | 0.029 | 1.006 | 0.060 | 1.005 | 0.089 | 1.026 | 0.082 | 1.000 | 0.035 |
Pan | 1.003 | 0.019 | 0.988 | 0.021 | 1.013 | 0.038 | 1.000 | 0.015 | 0.989 | 0.022 | 0.996 | 0.014 | 0.962 | 0.034 | 1.009 | 0.023 |
EvNeed | Grass | MixedFor | NatVeg | OpenShrub | Savanna | WoodySav | Inverse-Weighted Variance Estimator | |||||||||
Band | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | ±Sigma | Mean | Std Dev |
CA | 1.000 | 0.015 | 1.001 | 0.013 | 1.001 | 0.015 | 1.001 | 0.013 | 1.000 | 0.019 | 1.000 | 0.012 | 1.002 | 0.015 | 1.001 | 0.004 |
Blue | 1.002 | 0.014 | 1.001 | 0.014 | 1.002 | 0.018 | 1.002 | 0.015 | 1.002 | 0.021 | 1.001 | 0.020 | 1.002 | 0.018 | 1.002 | 0.004 |
Green | 0.994 | 0.021 | 0.996 | 0.017 | 0.998 | 0.028 | 0.998 | 0.020 | 0.999 | 0.022 | 0.997 | 0.022 | 0.998 | 0.024 | 0.996 | 0.006 |
Red | 0.999 | 0.031 | 0.999 | 0.022 | 1.003 | 0.026 | 1.000 | 0.030 | 0.999 | 0.022 | 0.999 | 0.022 | 1.002 | 0.032 | 1.000 | 0.007 |
NIR | 1.004 | 0.039 | 1.001 | 0.024 | 1.004 | 0.024 | 1.000 | 0.022 | 1.000 | 0.017 | 1.000 | 0.022 | 1.003 | 0.027 | 1.001 | 0.007 |
SWIR1 | 1.009 | 0.052 | 1.004 | 0.027 | 1.009 | 0.034 | 1.000 | 0.027 | 0.999 | 0.019 | 1.002 | 0.025 | 1.008 | 0.034 | 1.003 | 0.008 |
SWIR2 | 1.013 | 0.050 | 1.002 | 0.032 | 1.009 | 0.041 | 1.000 | 0.034 | 0.999 | 0.024 | 1.001 | 0.031 | 1.008 | 0.042 | 1.002 | 0.010 |
Pan | 0.978 | 0.023 | 1.002 | 0.019 | 0.997 | 0.019 | 1.004 | 0.017 | 1.015 | 0.018 | 1.004 | 0.016 | 1.001 | 0.016 | 0.999 | 0.005 |
Inverse-Weighted Variance Estimator | ||
Band | Mean | Std Dev |
CA | 1.001 | 0.004 |
Blue | 0.999 | 0.004 |
Green | 0.997 | 0.006 |
Red | 0.996 | 0.007 |
NIR | 0.996 | 0.007 |
SWIR1 | 0.992 | 0.008 |
SWIR2 | 0.990 | 0.010 |
Pan | 0.996 | 0.005 |
Band 10 | 0.998 | 0.008 |
Band 11 | 1.010 | 0.008 |
Band | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | Pan |
---|---|---|---|---|---|---|---|---|
Ratio Mean | 0.9989 | 0.9995 | 0.9992 | 1.0004 | 1.0001 | 1.0011 | 1.0013 | 1.0009 |
Uncertainty | 0.0012 | 0.0007 | 0.0010 | 0.0007 | 0.0008 | 0.0017 | 0.0015 | 0.0022 |
Band | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | Pan |
---|---|---|---|---|---|---|---|---|
Uncertainty | 0.0007 | 0.0011 | 0.0024 | 0.0015 | 0.0026 | 0.0017 | 0.0009 | 0.0017 |
Band | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | Pan |
---|---|---|---|---|---|---|---|---|
Uncertainty | 0.0001 | 0.0002 | 0.0006 | 0.0020 | 0.0055 | 0.0080 | 0.0081 | 0.0007 |
Band | CA | Blue | Green | Red | NIR | SWIR1 | SWIR2 | Pan |
---|---|---|---|---|---|---|---|---|
Uncertainty | 0.0014 | 0.0013 | 0.0027 | 0.0026 | 0.0062 | 0.0084 | 0.0083 | 0.0029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gross, G.; Helder, D.; Leigh, L. Extended Cross-Calibration Analysis Using Data from the Landsat 8 and 9 Underfly Event. Remote Sens. 2023, 15, 1788. https://doi.org/10.3390/rs15071788
Gross G, Helder D, Leigh L. Extended Cross-Calibration Analysis Using Data from the Landsat 8 and 9 Underfly Event. Remote Sensing. 2023; 15(7):1788. https://doi.org/10.3390/rs15071788
Chicago/Turabian StyleGross, Garrison, Dennis Helder, and Larry Leigh. 2023. "Extended Cross-Calibration Analysis Using Data from the Landsat 8 and 9 Underfly Event" Remote Sensing 15, no. 7: 1788. https://doi.org/10.3390/rs15071788
APA StyleGross, G., Helder, D., & Leigh, L. (2023). Extended Cross-Calibration Analysis Using Data from the Landsat 8 and 9 Underfly Event. Remote Sensing, 15(7), 1788. https://doi.org/10.3390/rs15071788